Hamidreza Kheiri Manjili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1428216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-delivery of siRNA and lycopene encapsulated hybrid lipid nanoparticles for dual silencing of insulin-like growth factor 1 receptor in MCF-7 breast cancer cell line. International Journal of Biological Macromolecules, 2022, 200, 335-349.	7.5	13
2	Mitigated Oxidative Stress and Cognitive Impairments in Transient Global Ischemia using Niosomal Selegiline-NBP delivery. Behavioural Neurology, 2022, 2022, 1-21.	2.1	4
3	The efficacy and neuroprotective effects of edaravone-loaded mPEG-b-PLGA polymeric nanoparticles on human neuroblastoma SH-SY5Y cell line as in vitro model of ischemia. Journal of Drug Delivery Science and Technology, 2022, 73, 103378.	3.0	4
4	Synthesis of methoxy poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers hybridized with DDAB cationic lipid as the efficient nanocarriers for in vitro delivery of lycopene into MCF-7 breast cancer cells. Journal of Drug Delivery Science and Technology, 2021, 66, 102806.	3.0	5
5	Toxicological assessment of 3â€monochloropropaneâ€1,2â€diol (3â€MCPD) as a main contaminant of foodstuff in three different <i>in vitro</i> models: Involvement of oxidative stress and cell death signaling pathway. Journal of Food Science, 2020, 85, 4061-4069.	3.1	12
6	Bovine serum albumin stabilized iron oxide and gold bimetallic heterodimers: Synthesis, characterization and Stereological study. Applied Organometallic Chemistry, 2019, 33, e5155.	3.5	13
7	Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. Journal of Biomedical Materials Research - Part A, 2019, 107, 2492-2500.	4.0	53
8	Biotin-functionalized copolymeric PEG-PCL micelles for <i>in vivo</i> tumour-targeted delivery of artemisinin. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 104-114.	2.8	49
9	In vivo and in vitro biocompatibility study of novel microemulsion hybridized with bovine serum albumin as nanocarrier for drug delivery. Heliyon, 2019, 5, e01858.	3.2	38
10	New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor. Scientific Reports, 2019, 9, 7173.	3.3	65
11	Glutathione (GSH) Peptide Conjugated Magnetic Nanoparticles As Blood–Brain Barrier Shuttle for MRI-Monitored Brain Delivery of Paclitaxel. ACS Biomaterials Science and Engineering, 2019, 5, 1677-1685.	5.2	51
12	Preparation and Evaluation of pH Sensitive Novel Anticancer Drug Carrier Based on Magnetic Chitosan Quartets. Drug Research, 2019, 69, 496-504.	1.7	6
13	Phenyl alanine & Tyrosine Amino acids Coated Magnetic Nanoparticles: Preparation and Toxicity study. Drug Research, 2019, 69, 277-283.	1.7	13
14	Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG–PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharmaceutical Development and Technology, 2019, 24, 89-98.	2.4	40
15	Monodisperse Rattle-Structured Gold Nanorod-Mesoporous Silica Nanoparticles Core–Shell as Sulforaphane Carrier and its Sustained-Release Property. Drug Research, 2018, 68, 504-513.	1.7	1
16	In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. European Polymer Journal, 2018, 103, 260-270.	5.4	52
17	Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. International Journal of Biological Macromolecules, 2018, 115, 83-89.	7.5	134
18	Enzymatic stimuliâ€responsive methotrexateâ€conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. Journal of Biomedical Materials Research - Part A, 2018, 106, 1646-1654.	4.0	63

#	Article	IF	CITATIONS
19	Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Development and Industrial Pharmacy, 2018, 44, 886-894.	2.0	87
20	Evaluation of UiOâ€66 metal organic framework as an effective sorbent for Curcumin's overdose. Applied Organometallic Chemistry, 2018, 32, e4221.	3.5	93
21	Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorganic Chemistry, 2018, 76, 501-509.	4.1	217
22	Methotrexate-conjugated mPEG–PCL copolymers: a novel approach for dual triggered drug delivery. New Journal of Chemistry, 2018, 42, 5937-5945.	2.8	43
23	<i>In vitro</i> and <i>in vivo</i> delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 926-936.	2.8	66
24	Facile Synthesis and Characterization of L-Aspartic Acid Coated Iron Oxide Magnetic Nanoparticles (IONPs) For Biomedical Applications. Drug Research, 2018, 68, 280-285.	1.7	43
25	Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. Journal of Materials Science, 2018, 53, 1634-1645.	3.7	105
26	Green and oneâ€pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Applied Organometallic Chemistry, 2018, 32, e4069.	3.5	68
27	Preparation and <i>in vivo</i> evaluation of anti-plasmodial properties of artemisinin-loaded PCL–PEG–PCL nanoparticles. Pharmaceutical Development and Technology, 2018, 23, 911-920.	2.4	32
28	Anticancer Activity of Tamoxifen Loaded Tyrosine Decorated Biocompatible Fe3O4 Magnetic Nanoparticles Against Breast Cancer Cell Lines. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1178-1186.	3.7	56
29	Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. International Journal of Biological Macromolecules, 2018, 108, 909-915.	7.5	89
30	Sono-chemical synthesis and characterization of Fe3O4@mTiO2-GO nanocarriers for dual-targeted colon drug delivery. Research on Chemical Intermediates, 2018, 44, 1889-1904.	2.7	52
31	Cytotoxic Activity and Kinetic Release Study of Lovastatin-Loaded Ph-Sensitive Polymersomes. Pharmaceutical Chemistry Journal, 2018, 52, 721-729.	0.8	2
32	Preparation and characterization of magnetic theranostic nanoparticles for curcumin delivery and evaluation as MRI contrast agent. Applied Organometallic Chemistry, 2018, 32, e4588.	3.5	9
33	Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Development and Industrial Pharmacy, 2018, 44, 1668-1678.	2.0	14
34	Synergistic effect of co-immobilized FGF-2 and vitronectin-derived peptide on feeder-free expansion of induced pluripotent stem cells. Materials Science and Engineering C, 2018, 93, 157-169.	7.3	12
35	Preparation, characterization and <i>in vitro</i> anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Development and Industrial Pharmacy, 2018, 44, 1895-1903.	2.0	27
36	Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. Journal of Materials Research, 2018, 33, 1602-1611.	2.6	26

#	Article	IF	CITATIONS
37	Co -delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for Delivery to Breast Cancer Cell Line. Iranian Journal of Pharmaceutical Research, 2018, 17, 480-494.	0.5	15
38	Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharmaceutical Development and Technology, 2017, 22, 642-651.	2.4	88
39	Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1728-1739.	2.8	41
40	Preparation and Characterization of Copolymeric Polymersomes for Protein Delivery. Drug Research, 2017, 67, 458-465.	1.7	42
41	New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Research on Chemical Intermediates, 2017, 43, 7423-7442.	2.7	67
42	Preparation and Characterization of PEGylated Iron Oxide-Gold Nanoparticles for Delivery of Sulforaphane and Curcumin. Drug Research, 2017, 67, 698-704.	1.7	43
43	Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 17-30.	4.3	78
44	The association between MMP2 â^1306 CÂ>ÂT (rs243865) polymorphism and risk of prostate cancer. Irish Journal of Medical Science, 2017, 186, 103-111.	1.5	11
45	D, L-Sulforaphane Loaded Fe3O4@ Gold Core Shell Nanoparticles: A Potential Sulforaphane Delivery System. PLoS ONE, 2016, 11, e0151344.	2.5	39
46	Study of Copolymer Composition on Drug Loading Efficiency of Enalapril in Polymersomes and Cytotoxicity of Drug Loaded Nanoparticles. Drug Research, 2016, 66, 495-504.	1.7	34
47	Poly(caprolactone)–poly(ethylene glycol)–poly(caprolactone) (PCL–PEG–PCL) nanoparticles: a valuable and efficient system for in vitro and in vivo delivery of curcumin. RSC Advances, 2016, 6, 14403-14415.	3.6	51
48	Development of a High-Resolution Melting Analysis Method for CYP2C19*17 Genotyping in Healthy Volunteers. Avicenna Journal of Medical Biotechnology, 2016, 8, 193-199.	0.3	6
49	Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: Practical strategy for the breast cancer therapy. European Journal of Medicinal Chemistry, 2014, 83, 646-654.	5.5	96
50	Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants. Parasitology Research, 2012, 111, 2115-2121.	1.6	30