
Stan Golunski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1427911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of Potassium Inclusion in a Silver Catalyst for N2O-Mediated Oxidation of Soot in Oxidising Exhaust Gases. Catalysts, 2022, 12, 753.	3.5	0
2	Structure Sensitivity and Hydration Effects in Pt/TiO2 and Pt/TiO2–SiO2 Catalysts for NO and Propane Oxidation. Topics in Catalysis, 2021, 64, 955-964.	2.8	1
3	CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion. Topics in Catalysis, 2021, 64, 974-983.	2.8	16
4	Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental, 2020, 264, 118501.	20.2	17
5	Silicon microfabricated reactor for <i>operando</i> XAS/DRIFTS studies of heterogeneous catalytic reactions. Catalysis Science and Technology, 2020, 10, 7842-7856.	4.1	6
6	Influence of the Preparation Method of Ag-K/CeO2-ZrO2-Al2O3 Catalysts on Their Structure and Activity for the Simultaneous Removal of Soot and NOx. Catalysts, 2020, 10, 294.	3.5	9
7	Operando potassium K-edge X-ray absorption spectroscopy: investigating potassium catalysts during soot oxidation. Physical Chemistry Chemical Physics, 2020, 22, 18976-18988.	2.8	12
8	Influence of Different Birnessite Interlayer Alkali Cations on Catalytic Oxidation of Soot and Light Hydrocarbons. Catalysts, 2020, 10, 507.	3.5	2
9	Lowering the Operating Temperature of Perovskite Catalysts for N ₂ O Decomposition through Control of Preparation Methods. ACS Catalysis, 2020, 10, 5430-5442.	11.2	31
10	Enhanced Activity and Stability of Gold/Ceria-Titania for the Low-Temperature Water-Gas Shift Reaction. Frontiers in Chemistry, 2019, 7, 443.	3.6	13
11	Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Applied Catalysis B: Environmental, 2019, 241, 471-482.	20.2	21
12	Dominant Effect of Support Wettability on the Reaction Pathway for Catalytic Wet Air Oxidation over Pt and Ru Nanoparticle Catalysts. ACS Catalysis, 2018, 8, 2730-2734.	11.2	19
13	Elucidating the Role of CO ₂ in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. ACS Catalysis, 2018, 8, 3454-3468.	11.2	80
14	Oxidation of Polynuclear Aromatic Hydrocarbons using Rutheniumâ€lonâ€Catalyzed Oxidation: The Role of Aromatic Ring Number in Reaction Kinetics and Product Distribution. Chemistry - A European Journal, 2018, 24, 655-662.	3.3	9
15	Investigating the Influence of Fe Speciation on N2O Decomposition Over Fe–ZSM-5 Catalysts. Topics in Catalysis, 2018, 61, 1983-1992.	2.8	18
16	Simultaneous removal of NOx and soot particulate from diesel exhaust by in-situ catalytic generation and utilisation of N2O. Applied Catalysis B: Environmental, 2018, 239, 10-15.	20.2	37
17	Activation and Deactivation of Gold/Ceria–Zirconia in the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie - International Edition, 2017, 56, 16037-16041.	13.8	49
18	Activation and Deactivation of Gold/Ceria–Zirconia in the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie, 2017, 129, 16253-16257.	2.0	5

Stan Golunski

#	Article	IF	CITATIONS
19	Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. ACS Catalysis, 2016, 6, 6623-6633.	11.2	71
20	Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Applied Catalysis B: Environmental, 2015, 176-177, 436-443.	20.2	50
21	Formation of reactive Lewis acid sites on Fe/WO 3 –ZrO 2 catalysts for higher temperature SCR applications. Applied Catalysis B: Environmental, 2015, 162, 174-179.	20.2	66
22	Rationalization of Interactions in Precious Metal/Ceria Catalysts Using the dâ€Band Center Model. Angewandte Chemie - International Edition, 2013, 52, 7737-7741.	13.8	181
23	Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental, 2013, 140-141, 671-679.	20.2	50
24	Promotion of Ceria Catalysts by Precious Metals: Changes in Nature of the Interaction under Reducing and Oxidizing Conditions. Journal of Physical Chemistry C, 2012, 116, 13569-13583.	3.1	54
25	Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science, 2012, 3, 2958.	7.4	14
26	What is the point of on-board fuel reforming?. Energy and Environmental Science, 2010, 3, 1918.	30.8	41
27	Raising the fuel heating value and recovering exhaust heat by on-board oxidative reforming of bioethanol. Energy and Environmental Science, 2010, 3, 780.	30.8	57
28	Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. Catalysis Today, 2002, 72, 107-113.	4.4	91