
Camilla I Svensson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1427720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods, 2014, 11, 629-632.	9.0	699
2	Tumor Necrosis Factor-α Induces Mechanical Allodynia after Spinal Nerve Ligation by Activation of p38 MAPK in Primary Sensory Neurons. Journal of Neuroscience, 2003, 23, 2517-2521.	1.7	497
3	Spatial organization of the somatosensory cortex revealed by osmFISH. Nature Methods, 2018, 15, 932-935.	9.0	402
4	Injury Type-Specific Calcium Channel α2Î-1 Subunit Up-Regulation in Rat Neuropathic Pain Models Correlates with Antiallodynic Effects of Gabapentin. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 1199-1205.	1.3	372
5	Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in in inflammation-induced spinal pain processing. Journal of Neurochemistry, 2003, 86, 1534-1544.	2.1	354
6	Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Annals of the Rheumatic Diseases, 2016, 75, 721-729.	0.5	289
7	THESPINALPHOSPHOLIPASE-CYCLOOXYGENASE-PROSTANOIDCASCADE INNOCICEPTIVEPROCESSING. Annual Review of Pharmacology and Toxicology, 2002, 42, 553-583.	4.2	287
8	The Acute Antihyperalgesic Action of Nonsteroidal, Anti-Inflammatory Drugs and Release of Spinal Prostaglandin E ₂ Is Mediated by the Inhibition of Constitutive Spinal Cyclooxygenase-2 (COX-2) but not COX-1. Journal of Neuroscience, 2001, 21, 5847-5853.	1.7	274
9	Intrathecal minocycline attenuates peripheral inflammationâ€induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. European Journal of Neuroscience, 2005, 22, 2431-2440.	1.2	233
10	Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 79-86.	3.5	207
11	Autoantibodies to citrullinated proteins may induce joint pain independent of inflammation. Annals of the Rheumatic Diseases, 2016, 75, 730-738.	0.5	205
12	Selective increase of tumour necrosis factor-alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. European Journal of Neuroscience, 2003, 17, 791-804.	1.2	195
13	Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia — significance for activation of the kynurenine pathway. Journal of Psychiatry and Neuroscience, 2015, 40, 126-133.	1.4	173
14	Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. Journal of Experimental Medicine, 2007, 204, 245-252.	4.2	166
15	Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain, 2014, 155, 1802-1813.	2.0	141
16	Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain, 2010, 149, 243-253.	2.0	140
17	Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE2 release and thermal hyperalgesia. NeuroReport, 2003, 14, 1153-1157.	0.6	138
18	The Rheb–mTOR Pathway Is Upregulated in Reactive Astrocytes of the Injured Spinal Cord. Journal of Neuroscience, 2009, 29, 1093-1104.	1.7	136

#	Article	IF	CITATIONS
19	Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12728-12733.	3.3	134
20	Spinal p38β isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. Journal of Neurochemistry, 2005, 92, 1508-1520.	2.1	133
21	An automated flinch detecting system for use in the formalin nociceptive bioassay. Journal of Applied Physiology, 2001, 90, 2386-2402.	1.2	127
22	Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain, 2011, 152, 2881-2891.	2.0	123
23	Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neuroscience Letters, 2005, 379, 209-213.	1.0	120
24	Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain, 2010, 151, 394-403.	2.0	117
25	Regulation of Peripheral Inflammation by Spinal p38 MAP Kinase in Rats. PLoS Medicine, 2006, 3, e338.	3.9	115
26	Passive transfer of fibromyalgia symptoms from patients to mice. Journal of Clinical Investigation, 2021, 131, .	3.9	106
27	Collagen antibody–induced arthritis evokes persistent pain with spinal glial involvement and transient prostaglandin dependency. Arthritis and Rheumatism, 2012, 64, 3886-3896.	6.7	97
28	Synthesis and Biological Activities of Cyclic Lanthionine Enkephalin Analogues:  δ-Opioid Receptor Selective Ligands. Journal of Medicinal Chemistry, 2002, 45, 3746-3754.	2.9	94
29	Elevated Spinal Cyclooxygenase and Prostaglandin Release During Hyperalgesia in Diabetic Rats. Diabetes, 2002, 51, 2249-2255.	0.3	93
30	Constitutive Spinal Cyclooxygenase-2 Participates in the Initiation of Tissue Injury-Induced Hyperalgesia. Journal of Neuroscience, 2004, 24, 2727-2732.	1.7	93
31	Spinal glial TLR4â€mediated nociception and production of prostaglandin E ₂ and TNF. British Journal of Pharmacology, 2010, 160, 1754-1764.	2.7	92
32	Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis and Rheumatism, 2004, 50, 1216-1225.	6.7	90
33	Extracellular High-Mobility Group Box 1 Protein (HMGB1) as a Mediator of Persistent Pain. Molecular Medicine, 2014, 20, 569-578.	1.9	83
34	Descending serotonergic facilitation of spinal ERK activation and pain behavior. FEBS Letters, 2006, 580, 6629-6634.	1.3	81
35	The Neuroimmunology of Chronic Pain: From Rodents to Humans. Journal of Neuroscience, 2021, 41, 855-865.	1.7	78
36	Pathogenesis of Spinally Mediated Hyperalgesia in Diabetes. Diabetes, 2007, 56, 1569-1576.	0.3	77

#	Article	IF	CITATIONS
37	Spinal phospholipase A2 in inflammatory hyperalgesia: role of Group IVA cPLA2. British Journal of Pharmacology, 2005, 144, 940-952.	2.7	76
38	Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience, 2010, 169, 1392-1402.	1.1	76
39	Cross-centre replication of suppressed burrowing behaviour as an ethologically relevant pain outcome measure in the rat: a prospective multicentre study. Pain, 2016, 157, 2350-2365.	2.0	74
40	Cartilage-binding antibodies induce pain through immune complex–mediated activation of neurons. Journal of Experimental Medicine, 2019, 216, 1904-1924.	4.2	71
41	Ensuring transparency and minimization of methodologic bias in preclinical pain research. Pain, 2016, 157, 901-909.	2.0	70
42	Systemic and Intrathecal Effects of a Novel Series of Phospholipase A2 Inhibitors on Hyperalgesia and Spinal Prostaglandin E2 Release. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 466-475.	1.3	68
43	Pathogenic Citrullineâ€Multispecific B Cell Receptor Clades in Rheumatoid Arthritis. Arthritis and Rheumatology, 2018, 70, 1933-1945.	2.9	68
44	Role of Extracellular Damage-Associated Molecular Pattern Molecules (DAMPs) as Mediators of Persistent Pain. Progress in Molecular Biology and Translational Science, 2015, 131, 251-279.	0.9	66
45	Spinal Actions of Lipoxin A4 and 17(R)-Resolvin D1 Attenuate Inflammation-Induced Mechanical Hypersensitivity and Spinal TNF Release. PLoS ONE, 2013, 8, e75543.	1.1	65
46	Role of Spinal Microglia in Visceral Hyperalgesia and NK1R Up-Regulation in a Rat Model of Chronic Stress. Gastroenterology, 2009, 136, 1339-1348.e2.	0.6	61
47	Spinal Astrocytes in Pain Processing: Non-Neuronal Cells as Therapeutic Targets. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 25-38.	3.4	60
48	Spinal phospholipase A2 in inflammatory hyperalgesia: Role of the small, secretory phospholipase A2. Neuroscience, 2005, 133, 543-553.	1.1	55
49	Pain in rheumatoid arthritis: models and mechanisms. Pain Management, 2016, 6, 265-284.	0.7	53
50	Inflammatory hyperalgesia induces essential bioactive lipid production in the spinal cord. Journal of Neurochemistry, 2010, 114, 981-993.	2.1	50
51	Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Annals of the Rheumatic Diseases, 2019, 78, 1621-1631.	0.5	49
52	Exploring the transcriptome of resident spinal microglia after collagen antibody–induced arthritis. Pain, 2019, 160, 224-236.	2.0	47
53	Inhibition of spinal constitutive NOS-2 by 1400W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. European Journal of Neuroscience, 2007, 25, 2964-2972.	1.2	44
54	Release of Prostaglandin E2 and Nitric Oxide from Spinal Microglia Is Dependent on Activation of p38 Mitogen-Activated Protein Kinase. Anesthesia and Analgesia, 2010, 111, 554-560.	1.1	43

#	Article	IF	CITATIONS
55	Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. Journal of Neuroscience Methods, 2011, 197, 118-127.	1.3	42
56	Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibodyâ€induced arthritis mouse model. Journal of Comparative Neurology, 2015, 523, 1505-1528.	0.9	39
57	Pathophysiology of chronic pain in cerebral palsy: implications for pharmacological treatment and research. Developmental Medicine and Child Neurology, 2018, 60, 861-865.	1.1	39
58	The circadian clock at the intercept of sleep and pain. Pain, 2020, 161, 894-900.	2.0	38
59	Pattern recognition receptors in chronic pain: Mechanisms and therapeutic implications. European Journal of Pharmacology, 2016, 788, 261-273.	1.7	36
60	Characterization of neuroinflammation and periphery-to-CNS inflammatory cross-talk in patients with disc herniation and degenerative disc disease. Brain, Behavior, and Immunity, 2019, 75, 60-71.	2.0	36
61	Sex-dependent role of microglia in disulfide high mobility group box 1 protein-mediated mechanical hypersensitivity. Pain, 2021, 162, 446-458.	2.0	36
62	Pain pathogenesis in rheumatoid arthritis—what have we learned from animal models?. Pain, 2018, 159, S98-S109.	2.0	34
63	Spinal p38 mitogenâ€activated protein kinase mediates allodynia induced by firstâ€degree burn in the rat. Journal of Neuroscience Research, 2009, 87, 948-955.	1.3	33
64	Interleukin-6: a local pain trigger?. Arthritis Research and Therapy, 2010, 12, 145.	1.6	32
65	Interleukin-6 Secretion by Astrocytes Is Dynamically Regulated by PI3K-mTOR-Calcium Signaling. PLoS ONE, 2014, 9, e92649.	1.1	31
66	Prostaglandin E2 release evoked by intrathecal dynorphin is dependent on spinal p38 mitogen activated protein kinase. Neuropeptides, 2005, 39, 485-494.	0.9	29
67	Localisation of adenine nucleotides in heat-stabilised mouse brains using ion mobility enabled MALDI imaging. International Journal of Mass Spectrometry, 2013, 345-347, 19-27.	0.7	29
68	The human CSF pain proteome. Journal of Proteomics, 2019, 190, 67-76.	1.2	29
69	Sex- and cell-dependent contribution of peripheral high mobility group box 1 and TLR4 in arthritis-induced pain. Pain, 2021, 162, 459-470.	2.0	29
70	Gadd45β deficiency in rheumatoid arthritis: Enhanced synovitis through JNK signaling. Arthritis and Rheumatism, 2009, 60, 3229-3240.	6.7	28
71	Cardiomyopathy, oxidative stress and impaired contractility in a rheumatoid arthritis mouse model. Heart, 2018, 104, 2026-2034.	1.2	28
72	Role of p38 mitogen activated protein kinase in a model of osteosarcoma-induced pain. Pharmacology Biochemistry and Behavior, 2008, 90, 664-675.	1.3	27

#	Article	IF	CITATIONS
73	Role of spinal p38î± and β MAPK in inflammatory hyperalgesia and spinal COX-2 expression. NeuroReport, 2010, 21, 313-317.	0.6	26
74	Systemic and Spinal Analgesic Activity of a δ-Opioid-Selective Lanthionine Enkephalin Analog. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 827-832.	1.3	25
75	Disrupted function of lactate transporter <scp>MCT1</scp> , but not <scp>MCT4</scp> , in Schwann cells affects the maintenance of motor endâ€plate innervation. Clia, 2021, 69, 124-136.	2.5	24
76	K/BxN Serum Transfer Arthritis as a Model of Inflammatory Joint Pain. Methods in Molecular Biology, 2012, 851, 249-260.	0.4	23
77	Rat Substrains Differ in the Magnitude of Spontaneous Locomotor Recovery and in the Development of Mechanical Hypersensitivity after Experimental Spinal Cord Injury. Journal of Neurotrauma, 2013, 30, 1805-1811.	1.7	23
78	NF-κB-Associated Pain-Related Neuropeptide Expression in Patients with Degenerative Disc Disease. International Journal of Molecular Sciences, 2019, 20, 658.	1.8	23
79	Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis. JCl Insight, 2019, 4, .	2.3	23
80	ldentification and quantification of neuropeptides in naÃ⁻ve mouse spinal cord using mass spectrometry reveals [desâ€Ser1]â€cerebellin as a novel modulator of nociception. Journal of Neurochemistry, 2014, 130, 199-214.	2.1	22
81	Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling. Basic Research in Cardiology, 2016, 111, 34.	2.5	22
82	Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3–dependent sensitization. Pain, 2022, 163, 1542-1559.	2.0	21
83	Inhibition of spinal cytosolic phospholipase A2 expression by an antisense oligonucleotide attenuates tissue injury-induced hyperalgesia. Neuroscience, 2008, 154, 1077-1087.	1.1	20
84	Activation of NF-κB in Synovium versus Cartilage from Patients with Advanced Knee Osteoarthritis: A Potential Contributor to Inflammatory Aspects of Disease Progression. Journal of Immunology, 2018, 201, 1918-1927.	0.4	20
85	Sinomenine alleviates mechanical hypersensitivity in mice with experimentally induced rheumatoid arthritis. Scandinavian Journal of Pain, 2015, 7, 9-14.	0.5	19
86	No evidence for altered plasma NGF and BDNF levels in fibromyalgia patients. Scientific Reports, 2019, 9, 13667.	1.6	19
87	Spinal release of tumour necrosis factor activates câ€ <scp>J</scp> un <scp>N</scp> â€ŧerminal kinase and mediates inflammationâ€induced hypersensitivity. European Journal of Pain, 2015, 19, 260-270.	1.4	18
88	The autoimmune aetiology of unexplained chronic pain. Autoimmunity Reviews, 2022, 21, 103015.	2.5	18
89	Pentoxifylline and propentofylline prevent proliferation and activation of the mammalian target of rapamycin and mitogen activated protein kinase in cultured spinal astrocytes. Journal of Neuroscience Research, 2013, 91, 300-312.	1.3	17
90	Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study. Brain Structure and Function, 2016, 221, 3521-3546.	1.2	17

#	Article	IF	CITATIONS
91	Systematic analysis of the cerebrospinal fluid proteome of fibromyalgia patients. Journal of Proteomics, 2019, 190, 35-43.	1.2	17
92	Delayed Imatinib Treatment for Acute Spinal Cord Injury: Functional Recovery and Serum Biomarkers. Journal of Neurotrauma, 2015, 32, 1645-1657.	1.7	16
93	Unbiased immune profiling reveals a natural killer cell-peripheral nerve axis in fibromyalgia. Pain, 2022, 163, e821-e836.	2.0	16
94	Monosodium iodoacetate-induced monoarthritis develops differently in knee versus ankle joint in rats. Neurobiology of Pain (Cambridge, Mass), 2019, 6, 100036.	1.0	14
95	Influence of model and matrix on cytokine profile in rat and human. Rheumatology, 2014, 53, 2297-2305.	0.9	12
96	GRK3 deficiency elicits brain immune activation and psychosis. Molecular Psychiatry, 2021, 26, 6820-6832.	4.1	12
97	Sex-related differences in response to masseteric injections of glutamate and nerve growth factor in healthy human participants. Scientific Reports, 2021, 11, 13873.	1.6	12
98	Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain, Behavior, and Immunity, 2022, 101, 214-230.	2.0	12
99	Using gait analysis to assess weight bearing in rats with Freund׳s complete adjuvant-induced monoarthritis to improve predictivity: Interfering with the cyclooxygenase and nerve growth factor pathways. European Journal of Pharmacology, 2015, 756, 75-84.	1.7	11
100	Group and Single Housing of Male Mice: Collected Experiences from Research Facilities in Sweden. Animals, 2019, 9, 1010.	1.0	11
101	Density of nerve fibres and expression of substance P, NR2Bâ€receptors and nerve growth factor in healthy human masseter muscle: An immunohistochemical study. Journal of Oral Rehabilitation, 2021, 48, 35-44.	1.3	11
102	Covariance Among Age, Spinal p38 MAP Kinase Activation and Allodynia. Journal of Pain, 2006, 7, 337-345.	0.7	9
103	Pain behaviour assessments by gait and weight bearing in surgically induced osteoarthritis and inflammatory arthritis. Physiology and Behavior, 2020, 225, 113079.	1.0	9
104	Cell–cell interactions in joint pain: rheumatoid arthritis and osteoarthritis. Pain, 2021, 162, 714-717.	2.0	9
105	Elevated inflammatory proteins in cerebrospinal fluid from patients with painful knee osteoarthritis are associated with reduced symptom severity. Journal of Neuroimmunology, 2020, 349, 577391.	1.1	8
106	Nerve growth factor and glutamate increase the density and expression of substance P-containing nerve fibers in healthy human masseter muscles. Scientific Reports, 2021, 11, 15673.	1.6	8
107	Analgesic properties of intrathecal glucocorticoids in three well established preclinical pain models. Scandinavian Journal of Pain, 2016, 10, 90-102.	0.5	7
108	Spinal injection of newly identified cerebellin-1 and cerebellin-2 peptides induce mechanical hypersensitivity in mice. Neuropeptides, 2018, 69, 53-59.	0.9	7

#	Article	IF	CITATIONS
109	Distribution of transmembrane AMPA receptor regulatory protein (TARP) isoforms in the rat spinal cord. Neuroscience, 2013, 248, 180-193.	1.1	6
110	Effect of intrathecal glucocorticoids on the central glucocorticoid receptor in a rat nerve ligation model. Scandinavian Journal of Pain, 2017, 16, 1-9.	0.5	5
111	Expression of mitochondrial <i>TSPO</i> and <i>FAM173B</i> is associated with inflammation and symptoms in patients with painful knee osteoarthritis. Rheumatology, 2021, 60, 1724-1733.	0.9	5
112	Autoantibodies Hurt: Transfer of Patient-Derived CASPR2 Antibodies Induces Neuropathic Pain in Mice. Neuron, 2018, 97, 729-731.	3.8	4
113	Research Recommendations Following the Discovery of Pain Sensitizing IgG Autoantibodies in Fibromyalgia Syndrome. Pain Medicine, 2022, 23, 1084-1094.	0.9	4
114	How to communicate in science. Annals of the Rheumatic Diseases, 2020, 79, e164-e164.	0.5	3
115	Neuronal Regulation of Pain and Inflammation. , 2017, , 461-474.e3.		2
116	UPEC kidney infection triggers neuro-immune communication leading to modulation of local renal inflammation by splenic IFNI3. PLoS Pathogens, 2021, 17, e1009553.	2.1	2
117	Prostanoids in Pain. , 0, , 473-480.		0
118	T1450 Glucocorticoids Mediate Spinal Microglia Activation and Visceral Hyperalgesia in a Rat Model of Chronic Stress. Gastroenterology, 2008, 134, A-558.	0.6	0
119	Persistent tactile allodynia and spinal glia activation in the K/BxN serum transfer arthritis model. Annals of the Rheumatic Diseases, 2010, 69, A53-A54.	0.5	0
120	Pain mechanisms in animal models of rheumatoid arthritis. Scandinavian Journal of Pain, 2010, 1, 168-169.	0.5	0
121	Collagen Antibody-Induced Arthritis: A Disease-Relevant Model for Studies of Persistent Joint Pain. Methods in Pharmacology and Toxicology, 2012, , 437-455.	0.1	0
122	SAT0054â€INVESTIGATING MECHANISMS OF AUTOANTIBODY INDUCED PAIN, BONE LOSS AND ARTHRITIS DEVELOPMENT. , 2019, , .		0
123	Profiling of lipid mediators released spinally in response to peripheral painful inflammation. FASEB Journal, 2008, 22, 1040.2.	0.2	0
124	Spinal Cord Phospholipase A2 and Prostanoids in Pain Processing. , 2009, , 403-423.		0