Barbara G Turgeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1427388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Septins are required for reproductive propagule development and virulence of the maize pathogen Cochliobolus heterostrophus. Fungal Genetics and Biology, 2020, 135, 103291.	0.9	14
2	A Genome Resource of <i>Setosphaeria turcica</i> , Causal Agent of Northern Leaf Blight of Maize. Phytopathology, 2020, 110, 2014-2016.	1.1	9
3	Victorin, the host-selective cyclic peptide toxin from the oat pathogen <i>Cochliobolus victoriae</i> , is ribosomally encoded. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24243-24250.	3.3	41
4	Natural roles of nonribosomal peptide metabolites in fungi. Mycoscience, 2020, 61, 101-110.	0.3	20
5	Nematode ascaroside enhances resistance in a broad spectrum of plant–pathogen systems. Journal of Phytopathology, 2019, 167, 265-272.	0.5	18
6	A DNase from a Fungal Phytopathogen Is a Virulence Factor Likely Deployed as Counter Defense against Host-Secreted Extracellular DNA. MBio, 2019, 10, .	1.8	25
7	Population Genetics of <i>Verticillium dahliae</i> in Iran Based on Microsatellite and Single Nucleotide Polymorphism Markers. Phytopathology, 2018, 108, 780-788.	1.1	9
8	Determinants of Virulence and In Vitro Development Colocalize on a Genetic Map of <i>Setosphaeria turcica</i> . Phytopathology, 2018, 108, 254-263.	1.1	34
9	Clues to an Evolutionary Mystery: The Genes for T-Toxin, Enabler of the Devastating 1970 Southern Corn Leaf Blight Epidemic, Are Present in Ancestral Species, Suggesting an Ancient Origin. Molecular Plant-Microbe Interactions, 2018, 31, 1154-1165.	1.4	12
10	Sorbitol Modulates Resistance to <i>Alternaria alternata</i> by Regulating the Expression of an <i>NLR</i> Resistance Gene in Apple. Plant Cell, 2018, 30, 1562-1581.	3.1	97
11	Disruptions of the genes involved in lysine biosynthesis, iron acquisition, and secondary metabolisms affect virulence and fitness in Metarhizium robertsii. Fungal Genetics and Biology, 2017, 98, 23-34.	0.9	12
12	Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum. Fungal Genetics and Biology, 2017, 98, 46-51.	0.9	12
13	Self-fertility in Chromocrea spinulosa is a consequence of direct repeat-mediated loss of MAT1-2, subsequent imbalance of nuclei differing in mating type, and recognition between unlike nuclei in a common cytoplasm. PLoS Genetics, 2017, 13, e1006981.	1.5	11
14	Root Border Cells and Their Role in Plant Defense. Annual Review of Phytopathology, 2016, 54, 143-161.	3.5	79
15	Fungal Sex: The <i>Ascomycota</i> . Microbiology Spectrum, 2016, 4, .	1.2	50
16	Comparative chemical screening and genetic analysis reveal tentoxin as a new virulence factor in <scp><i>C</i></scp> <i>ochliobolus miyabeanus</i> , the causal agent of brown spot disease on rice. Molecular Plant Pathology, 2016, 17, 805-817.	2.0	26
17	Virulence, Host-Selective Toxin Production, and Development of Three <i>Cochliobolus</i> Phytopathogens Lacking the Sfp-Type 4â€2-Phosphopantetheinyl Transferase Ppt1. Molecular Plant-Microbe Interactions, 2015, 28, 1130-1141.	1.4	9
18	Pondering Mating: Pneumocystis jirovecii, the Human Lung Pathogen, Selfs without Mating Type Switching, in Contrast to Its Close Relative Schizosaccharomyces pombe, MBio, 2015, 6, e00583-15,	1.8	6

#	Article	IF	CITATIONS
19	A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize. Fungal Genetics and Biology, 2015, 81, 12-24.	0.9	30
20	Vel2 and Vos1 hold essential roles in ascospore and asexual spore development of the heterothallic maize pathogen Cochliobolus heterostrophus. Fungal Genetics and Biology, 2014, 70, 113-124.	0.9	8
21	Standardization of Functional Reporter and Antibiotic Resistance Cassettes to Facilitate the Genetic Engineering of Filamentous Fungi. ACS Synthetic Biology, 2014, 3, 960-962.	1.9	12
22	Characterization and potential evolutionary impact of transposable elements in the genome of Cochliobolus heterostrophus. BMC Genomics, 2014, 15, 536.	1.2	32
23	Reductive Iron Assimilation and Intracellular Siderophores Assist Extracellular Siderophore-Driven Iron Homeostasis and Virulence. Molecular Plant-Microbe Interactions, 2014, 27, 793-808.	1.4	27
24	Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Frontiers in Microbiology, 2014, 5, 759.	1.5	60
25	Setosphaeria rostrata: Insights from the sequenced genome of Setosphaeria turcica. Fungal Genetics and Biology, 2013, 61, 158-163.	0.9	12
26	Structure and function of the mating-type locus in the homothallic ascomycete, Didymella zeae-maydis. Journal of Microbiology, 2013, 51, 814-820.	1.3	15
27	Efficient Gene Knockout in the Maize Pathogen <i>Setosphaeria turcica</i> Using <i>Agrobacterium tumefaciens</i> -Mediated Transformation. Phytopathology, 2013, 103, 641-647.	1.1	33
28	Cochliobolus heterostrophus Llm1 – A Lae1-like methyltransferase regulates T-toxin production, virulence, and development. Fungal Genetics and Biology, 2013, 51, 21-33.	0.9	23
29	Comparative Genomics of a Plant-Pathogenic Fungus, <i>Pyrenophora tritici-repentis</i> , Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence. G3: Genes, Genomes, Genetics, 2013, 3, 41-63.	0.8	167
30	Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genetics, 2013, 9, e1003233.	1.5	232
31	Iron, Oxidative Stress, and Virulence: Roles of Iron-Sensitive Transcription Factor Sre1 and the Redox Sensor ChAp1 in the Maize Pathogen <i>Cochliobolus heterostrophus</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1473-1485.	1.4	21
32	Cochliobolus heterostrophus: A Dothideomycete Pathogen of Maize. Soil Biology, 2013, , 213-228.	0.6	3
33	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
34	ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus. PLoS Pathogens, 2012, 8, e1002542.	2.1	145
35	Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Current Genetics, 2012, 58, 79-92.	0.8	70
36	Altering sexual reproductive mode by interspecific exchange of MAT loci. Fungal Genetics and Biology, 2011, 48, 714-724.	0.9	20

#	Article	IF	CITATIONS
37	Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.	5.8	481
38	Six New Genes Required for Production of T-Toxin, a Polyketide Determinant of High Virulence of Cochliobolus heterostrophus to Maize. Molecular Plant-Microbe Interactions, 2010, 23, 458-472.	1.4	64
39	Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evolutionary Biology, 2010, 10, 26.	3.2	184
40	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	13.7	1,442
41	Protoplast Transformation of Filamentous Fungi. Methods in Molecular Biology, 2010, 638, 3-19.	0.4	66
42	Histidine Kinase Two-Component Response Regulator Proteins Regulate Reproductive Development, Virulence, and Stress Responses of the Fungal Cereal Pathogens Cochliobolus heterostrophus and Gibberella zeae. Eukaryotic Cell, 2010, 9, 1867-1880.	3.4	44
43	Tracing the Origin of the Fungal α1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution. PLoS ONE, 2010, 5, e15199.	1.1	93
44	Fungal genome sequencing and bioenergy. Fungal Biology Reviews, 2008, 22, 1-5.	1.9	27
45	Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. BMC Evolutionary Biology, 2008, 8, 328.	3.2	87
46	Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. Mycological Research, 2008, 112, 200-206.	2.5	37
47	Siderophores in Fungal Physiology and Virulence. Annual Review of Phytopathology, 2008, 46, 149-187.	3.5	365
48	Genetic and Genomic Dissection of the Cochliobolus heterostrophus Tox1 Locus Controlling Biosynthesis of the Polyketide Virulence Factor Tâ€ŧoxin. Advances in Genetics, 2007, 57, 219-261.	0.8	56
49	Intracellular Siderophores Are Essential for Ascomycete Sexual Development in Heterothallic Cochliobolus heterostrophus and Homothallic Gibberella zeae. Eukaryotic Cell, 2007, 6, 1339-1353.	3.4	95
50	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	6.0	837
51	Systematics and mating systems of two fungal pathogens of opium poppy: the heterothallic Crivellia papaveracea with a Brachycladium penicillatum asexual state and a homothallic species with a Brachycladium papaveris asexual state. Canadian Journal of Botany, 2006, 84, 1304-1326.	1.2	44
52	NPS6, Encoding a Nonribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, Is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes. Plant Cell, 2006, 18, 2836-2853.	3.1	311
53	Two Polyketide Synthase-Encoding Genes Are Required for Biosynthesis of the Polyketide Virulence Factor, T-toxin, by Cochliobolus heterostrophus. Molecular Plant-Microbe Interactions, 2006, 19, 139-149.	1.4	135
54	Lateral transfer of mating system in Stemphylium. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11390-11395.	3.3	110

#	Article	IF	CITATIONS
55	Functional Analysis of All Nonribosomal Peptide Synthetases in Cochliobolus heterostrophus Reveals a Factor, NPS6, Involved in Virulence and Resistance to Oxidative Stress. Eukaryotic Cell, 2005, 4, 545-555.	3.4	144
56	G-Protein β Subunit of Cochliobolus heterostrophus Involved in Virulence, Asexual and Sexual Reproductive Ability, and Morphogenesis. Eukaryotic Cell, 2004, 3, 1653-1663.	3.4	44
57	Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycological Research, 2003, 107, 169-182.	2.5	51
58	Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Molecular Microbiology, 2003, 50, 145-152.	1.2	159
59	Deletion of all Cochliobolus heterostrophus Monofunctional Catalase-Encoding Genes Reveals a Role for One in Sensitivity to Oxidative Stress but None with a Role in Virulence. Molecular Plant-Microbe Interactions, 2003, 16, 1013-1021.	1.4	28
60	A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genetics and Biology, 2003, 39, 1-15.	0.9	54
61	A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5980-5985.	3.3	76
62	Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens. Eukaryotic Cell, 2003, 2, 1151-1161.	3.4	267
63	Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15670-15675.	3.3	485
64	Split-Marker Recombination for Efficient Targeted Deletion of Fungal Genes. Fungal Genetics Reports, 2003, 50, 9-11.	0.6	287
65	A Decarboxylase Encoded at the Cochliobolus heterostrophus Translocation-Associated Tox1B Locus Is Required for Polyketide (T-toxin) Biosynthesis and High Virulence on T-cytoplasm Maize. Molecular Plant-Microbe Interactions, 2002, 15, 883-893.	1.4	34
66	Proposed Nomenclature for Mating Type Genes of Filamentous Ascomycetes. Fungal Genetics and Biology, 2000, 31, 1-5.	0.9	305
67	Evolution of Host Specific Virulence in Cochliobolus heterostrophus. , 2000, , 93-126.		16
68	The two Cochliobolus mating type genes are conserved among species but one of them is missing in C. victoriae. Mycological Research, 1998, 102, 919-929.	2.5	35
69	Single mating type-specific genes and their 3′ UTRs control mating and fertility in Cochliobolus heterostrophus. Molecular Genetics and Genomics, 1998, 259, 272-281.	2.4	44
70	APPLICATION OF MATING TYPE GENE TECHNOLOGY TO PROBLEMS IN FUNGAL BIOLOGY. Annual Review of Phytopathology, 1998, 36, 115-137.	3.5	225
71	A Fungal Kinesin Required for Organelle Motility, Hyphal Growth, and Morphogenesis. Molecular Biology of the Cell, 1998, 9, 89-101.	0.9	76
72	Evolution of Pathogenic and Reproductive Strategies in Cochliobolus and Related Genera. Developments in Plant Pathology, 1998, , 153-163.	0.1	6

#	Article	IF	CITATIONS
73	Transcripts at the mating type locus of Cochliobolus heterostrophus. Molecular Genetics and Genomics, 1997, 256, 661-673.	2.4	27
74	Deletion of theCochliobolus heterostrophus mating-type (MAT) locus promotes the function ofMAT transgenes. Current Genetics, 1996, 29, 241-249.	0.8	1
75	Deletion of the Cochliobolus heterostrophus mating-type (MAT) locus promotes the function of MAT transgenes. Current Genetics, 1996, 29, 241-249.	0.8	52
76	Molecular-genetic evaluation of fungal molecules for roles in pathogenesis to plants. Journal of Genetics, 1996, 75, 425-440.	0.4	30
77	A Polyketide Synthase Is Required for Fungal Virulence and Production of the Polyketide T-Toxin. Plant Cell, 1996, 8, 2139.	3.1	41
78	Structure and function of mating type genes in <i>Cochliobolus</i> spp. and asexual fungi. Canadian Journal of Botany, 1995, 73, 778-783.	1.2	28
79	Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Molecular Genetics and Genomics, 1993, 238-238, 270-284.	2.4	185
80	Transformation of plant pathogenic fungi. , 1989, , 195-207.		0
81	Organization of ribosomal RNA genes in the fungus Cochliobolus heterostrophus. Current Genetics, 1988, 14, 573-582.	0.8	93
82	Transformation of the fungal maize pathogen Cochliobolus heterostrophus using the Aspergillus nidulans amdS gene. Molecular Genetics and Genomics, 1985, 201, 450-453.	2.4	132
83	Molecular Bases of Fungal Pathogenicity to Plants. , 1985, , 417-448.		13
84	A mitochondrial plasmid from the plant pathogenic fungus Cochliobolus heterostrophus. Molecular Genetics and Genomics, 1984, 196, 301-310.	2.4	35
85	Early events in the infection of soybean by Rhizobium japonicum. Time course and cytology of the initial infection process. Canadian Journal of Botany, 1982, 60, 152-161.	1.2	106
86	Early Events in the Infection of Soybean (<i>Glycine max</i> L. Merr) by <i>Rhizobium japonicum</i> . Plant Physiology, 1980, 66, 1027-1031.	2.3	368
87	Physical map of defective interfering particles of bacteriophage f1. Journal of Molecular Biology, 1977, 111, 395-414.	2.0	49
88	Secondary Metabolism. , 0, , 376-395.		7
89	Fungal Sex: The <i>Ascomycota</i> ., 0, , 115-145.		4
90	Cochliobolus and Podospora: Mechanisms of Sex Determination and the Evolution of Reproductive Lifestyle. , 0, , 91-121.		6

6