List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1426542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatially Resolved Raman Spectroelectrochemistry of Solid-State Polythiophene/Viologen Memory Devices. Journal of the American Chemical Society, 2012, 134, 14869-14876.	6.6	118
2	TiO ₂ –Co ₃ O ₄ Core–Shell Nanorods: Bifunctional Role in Better Energy Storage and Electrochromism. ACS Applied Energy Materials, 2018, 1, 790-798.	2.5	97
3	Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: An experimental and theoretical investigation. Journal of Applied Physics, 2017, 122, .	1.1	95
4	Diffuse reflectance spectroscopy: An effective tool to probe the defect states in wide band gap semiconducting materials. Materials Science in Semiconductor Processing, 2018, 86, 151-156.	1.9	88
5	Polythiophene–PCBM-Based All-Organic Electrochromic Device: Fast and Flexible. ACS Applied Electronic Materials, 2019, 1, 58-63.	2.0	81
6	Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing. Nanoscale Research Letters, 2018, 13, 16.	3.1	73
7	Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device. ACS Applied Electronic Materials, 2020, 2, 1768-1773.	2.0	68
8	Polythiophene -viologen bilayer for electro-trichromic device. Solar Energy Materials and Solar Cells, 2018, 188, 249-254.	3.0	64
9	Polythiophene-nanoWO ₃ bilayer as an electrochromic infrared filter: a transparent heat shield. Journal of Materials Chemistry C, 2020, 8, 1773-1780.	2.7	60
10	Temperature dependent Raman modes of reduced graphene oxide: Effect of anharmonicity, crystallite size and defects. Carbon, 2021, 184, 437-444.	5.4	60
11	Qualitative Evolution of Asymmetric Raman Line-Shape for NanoStructures. Silicon, 2014, 6, 117-121.	1.8	59
12	Prussian Blue-Viologen Inorganic–Organic Hybrid Blend for Improved Electrochromic Performance. ACS Applied Electronic Materials, 2019, 1, 892-899.	2.0	56
13	Current status of some electrochromic materials and devices: a brief review. Journal Physics D: Applied Physics, 2021, 54, 503002.	1.3	56
14	Fast electrochromic display: tetrathiafulvalene–graphene nanoflake as facilitating materials. Journal of Materials Chemistry C, 2017, 5, 9504-9512.	2.7	55
15	Nickel Cobalt Oxide Nanoneedles for Electrochromic Glucose Sensors. ACS Applied Nano Materials, 2021, 4, 2143-2152.	2.4	54
16	Fano Scattering: Manifestation of Acoustic Phonons at the Nanoscale. Journal of Physical Chemistry Letters, 2016, 7, 5291-5296.	2.1	53
17	Strain control of Urbach energy in Cr-doped PrFeO3. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	53
18	Structural, optical and electronic properties of RFeO3. Ceramics International, 2018, 44, 8344-8349.	2.3	51

#	Article	IF	CITATIONS
19	Quantifying the Short-Range Order in Amorphous Silicon by Raman Scattering. Analytical Chemistry, 2018, 90, 8123-8129.	3.2	47
20	Interfacial redox centers as origin of color switching in organic electrochromic device. Optical Materials, 2017, 66, 65-71.	1.7	45
21	Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Applied Sciences, 2019, 1, 1.	1.5	45
22	Raman spectroscopy for study of interplay between phonon confinement and Fano effect in silicon nanowires. Journal of Raman Spectroscopy, 2016, 47, 283-288.	1.2	43
23	Interplay between phonon confinement and Fano effect on Raman line shape for semiconductor nanostructures: Analytical study. Solid State Communications, 2016, 230, 25-29.	0.9	42
24	Spectral Anomaly in Raman Scattering from p-Type Silicon Nanowires. Journal of Physical Chemistry C, 2017, 121, 5372-5378.	1.5	39
25	Quantum confinement effects in silicon nanocrystals produced by laser-induced etching and cw laser annealing. Semiconductor Science and Technology, 2006, 21, 1627-1632.	1.0	38
26	Tracking Dynamic Doping in a Solid-State Electrochromic Device: Raman Microscopy Validates the Switching Mechanism. Analytical Chemistry, 2020, 92, 6088-6093.	3.2	38
27	Organic Nanostructures on Inorganic Ones: An Efficient Electrochromic Display by Design. ACS Applied Nano Materials, 2018, 1, 3715-3723.	2.4	37
28	Multi-walled carbon nanotubes doping for fast and efficient hybrid solid state electrochromic device. Applied Physics Letters, 2021, 118, .	1.5	37
29	Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Physical Chemistry Chemical Physics, 2017, 19, 31788-31795.	1.3	36
30	Nano-cobalt oxide/viologen hybrid solid state device: Electrochromism beyond chemical cell. Applied Physics Letters, 2020, 116, .	1.5	36
31	Photoexcited Fano interaction in laser-etched silicon nanostructures. Journal of Applied Physics, 2007, 101, 064315.	1.1	35
32	Fe doped LaGaO ₃ : good white light emitters. RSC Advances, 2016, 6, 100230-100238.	1.7	35
33	Study on the mineral phase characteristics of various Indian biomass and coal fly ash for its use in masonry construction products. Construction and Building Materials, 2020, 235, 117413.	3.2	35
34	Silicon nanowires prepared by metal induced etching (MIE): good field emitters. RSC Advances, 2014, 4, 57799-57803.	1.7	33
35	Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3. Journal of Materials Science: Materials in Electronics, 2019, 30, 9498-9506.	1.1	33
36	MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance. Solar Energy Materials and Solar Cells, 2022, 236, 111502.	3.0	33

#	Article	IF	CITATIONS
37	Strain induced disordered phonon modes in Cr doped PrFeO ₃ . Journal of Physics Condensed Matter, 2019, 31, 275602.	0.7	31
38	Observation of large dielectric permittivity and dielectric relaxation phenomenon in Mn-doped lanthanum gallate. RSC Advances, 2016, 6, 26621-26629.	1.7	30
39	Study of Porous Silicon Prepared Using Metal-Induced Etching (MIE): a Comparison with Laser-Induced Etching (LIE). Silicon, 2017, 9, 483-488.	1.8	30
40	Electronic Raman scattering in the laser-etched silicon nanostructures. Journal of Applied Physics, 2010, 107, .	1.1	29
41	Optical spectroscopy: An effective tool to probe the origin of dielectric loss in Cr doped PrFeO3. Ceramics International, 2019, 45, 8585-8592.	2.3	29
42	Temporal <i>In Vitro</i> Raman Spectroscopy for Monitoring Replication Kinetics of Epstein–Barr Virus Infection in Glial Cells. ACS Omega, 2020, 5, 29547-29560.	1.6	29
43	Asymmetry to symmetry transition of Fano line-shape: analytical description. Indian Journal of Physics, 2013, 87, 49-52.	0.9	28
44	Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. Journal of Materials Chemistry C, 2017, 5, 9611-9618.	2.7	28
45	Formation of Si and Ge quantum structures by laser-induced etching. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2444-2450.	0.8	27
46	Macro and microsurface morphology reconstructions during laser-induced etching of silicon. Micron, 2008, 39, 287-293.	1.1	27
47	Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 257-263.	1.9	26
48	Precursor concentration dependent hydrothermal NiO nanopetals: Tuning morphology for efficient applications. Superlattices and Microstructures, 2019, 125, 138-143.	1.4	26
49	Pentafluorophenyl substituted fulleropyrrolidine: a molecule enabling the most efficient flexible electrochromic device with fast switching. Journal of Materials Chemistry C, 2021, 9, 3462-3469.	2.7	26
50	Direct correlation between the band gap and dielectric loss in Hf doped BaTiO3. Journal of Materials Science: Materials in Electronics, 2019, 30, 8064-8070.	1.1	25
51	Mapping Longitudinal Inhomogeneity in Nanostructures Using Cross-Sectional Spatial Raman Imaging. Journal of Physical Chemistry C, 2020, 124, 6467-6471.	1.5	25
52	Electron Donor Ferrocenyl Phenothiazine: Counter Ion for Improving All-Organic Electrochromism. ACS Applied Electronic Materials, 2020, 2, 2994-3000.	2.0	23
53	Manifestation of anharmonicities in terms of phonon modes' energy and lifetime in multiwall carbon nanotubes. Carbon, 2021, 171, 568-574.	5.4	23
54	Effect of silicon resistivity on its porosification using metal induced chemical etching: morphology and photoluminescence studies. Materials Research Express, 2015, 2, 036501.	0.8	22

#	Article	IF	CITATIONS
55	Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE). Superlattices and Microstructures, 2016, 94, 101-107.	1.4	22
56	Ecofriendly gold nanoparticles – Lysozyme interaction: Thermodynamical perspectives. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 284-290.	1.7	22
57	Effect of self-doping on the charge state of Fe ions and crystal field transitions in YFeO3: Experiments and theory. Journal of Applied Physics, 2019, 125, .	1.1	22
58	Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures. Nanoscale Research Letters, 2008, 3, .	3.1	21
59	Live spectroscopy to observe electrochromism in viologen based solid state device. Solid State Communications, 2017, 261, 17-20.	0.9	21
60	Raw hibiscus extract as redox active biomaterial for novel herbal electrochromic device. Solar Energy Materials and Solar Cells, 2020, 215, 110588.	3.0	21
61	Raman Spectroscopy as a Simple yet Effective Analytical Tool for Determining Fermi Energy and Temperature Dependent Fermi Shift in Silicon. Analytical Chemistry, 2022, 94, 1510-1514.	3.2	21
62	Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication. Physical Chemistry Chemical Physics, 2011, 13, 14318.	1.3	20
63	Effect of electron irradiation on the optical properties of SrTiO ₃ : An experimental and theoretical investigations. Materials Research Express, 2018, 5, 036210.	0.8	20
64	Indication of Neurodegenerative Cascade Initiation by Amyloid-like Aggregate-Forming EBV Proteins and Peptide in Alzheimer's Disease. ACS Chemical Neuroscience, 2021, 12, 3957-3967.	1.7	20
65	Plant derived active compounds as potential anti SARS-CoV-2 agents: an <i>in-silico</i> study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10629-10650.	2.0	19
66	Unintended Deviation of Fermi Level from Band Edge in Fractal Silicon Nanostructures: Consequence of Dopants' Zonal Depletion. Journal of Physical Chemistry C, 2020, 124, 16675-16679.	1.5	19
67	Fano-Type Wavelength-Dependent Asymmetric Raman Line Shapes from MoS ₂ Nanoflakes. ACS Physical Chemistry Au, 2022, 2, 417-422.	1.9	19
68	Enhancing Viologen's Electrochromism by Incorporating Thiophene: A Step Toward Allâ€Organic Flexible Device. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800680.	0.8	18
69	Manifestation of magnetoelastic interactions in Raman spectra of Ho _{<i>x</i>} Nd1â^' _{<i>x</i>} Fe ₃ (BO ₃) ₄ crystals. Journal of Advanced Dielectrics, 2018, 08, 1850011.	1.5	18
70	Charge neutral crystal field transitions: A measure of electron–phonon interaction. Journal of Physics and Chemistry of Solids, 2019, 135, 109102.	1.9	18
71	Pseudo-Anomalous Size-Dependent Electron–Phonon Interaction in Graded Energy Band: Solving the Fano Paradox. Journal of Physical Chemistry Letters, 2021, 12, 2044-2051.	2.1	18
72	Prussian blueâ€based inorganic flexible electrochromism glucose sensor. IET Nanodielectrics, 2021, 4, 165-170.	2.0	18

#	Article	IF	CITATIONS
73	Room temperature magnetodielectric studies on Mn-doped LaGaO ₃ . Materials Research Express, 2015, 2, 096105.	0.8	17
74	Observation of room temperature magnetodielectric effect in Mn-doped lanthanum gallate and study of its magnetic properties. Journal of Materials Chemistry C, 2016, 4, 10876-10886.	2.7	17
75	Possibility of spin-polarized transport in edge fluorinated armchair boron nitride nanoribbons. RSC Advances, 2016, 6, 11014-11022.	1.7	17
76	Possible evidence of delocalized excitons in Cr-doped PrFeO3: An experimental and theoretical realization. Journal of Physics and Chemistry of Solids, 2019, 130, 230-235.	1.9	17
77	Effect of some physical perturbations and their interplay on Raman spectral line shapes in silicon: A brief review. Journal of Raman Spectroscopy, 2021, 52, 2100-2118.	1.2	17
78	Half-metallicity in armchair boron nitride nanoribbons: A first-principles study. Solid State Communications, 2015, 212, 19-24.	0.9	16
79	Probing structural distortions in rare earth chromites using Indian synchrotron radiation source. Indian Journal of Physics, 2016, 90, 1347-1354.	0.9	16
80	Improved field emission from appropriately packed TiO2 nanorods: Designing the miniaturization. Superlattices and Microstructures, 2019, 126, 1-7.	1.4	16
81	Recent updates on COVID-19: A holistic review. Heliyon, 2020, 6, e05706.	1.4	16
82	Chronoamperometric deposition of transparent WO ₃ film for application as power efficient electrochromic auxiliary electrode. Journal Physics D: Applied Physics, 2022, 55, 365103.	1.3	16
83	Quantum interference in the Raman scattering from the silicon nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2882-2886.	0.9	15
84	Spectroscopic Investigation of Quantum Confinement Effects in Ion Implanted Silicon-on-Sapphire Films. Silicon, 2010, 2, 25-31.	1.8	15
85	Design and development of in-situ temperature dependent diffuse reflectance spectroscopy setup. Journal of Instrumentation, 2018, 13, T11003-T11003.	0.5	15
86	Graphene nanoflakes: Foundation for improving solid state electrochemistry based electrochromic devices. Solar Energy Materials and Solar Cells, 2019, 200, 110041.	3.0	15
87	Raman Spectromicroscopy: A Tool to "See―Subtle Aspects in Science, Technology, and Engineering. Journal of Physical Chemistry C, 2022, 126, 4733-4743.	1.5	15
88	Room-Temperature Magneto-dielectric Effect in LaGa _{0.7} Fe _{0.3} O _{3+γ} ; Origin and Impact of Excess Oxygen. Inorganic Chemistry, 2017, 56, 3809-3819.	1.9	14
89	Porous Silicon's fractal nature revisited. Superlattices and Microstructures, 2018, 120, 141-147.	1.4	14
90	Understanding perceived color through gradual spectroscopic variations in electrochromism. Indian Journal of Physics, 2019, 93, 927-933.	0.9	14

#	Article	IF	CITATIONS
91	Anharmonicity induced faster decay of hot phonons in rutile TiO ₂ nanorods: a Raman spectromicroscopy study. Materials Advances, 2022, 3, 1602-1608.	2.6	14
92	Bifunctional Application of Viologen-MoS ₂ -CNT/Polythiophene Device as Electrochromic Diode and Half-Wave Rectifier. ACS Materials Au, 2022, 2, 293-300.	2.6	14
93	Spectroscopic investigation of porous GaAs prepared by laser-induced etching. Journal of Non-Crystalline Solids, 2006, 352, 2236-2242.	1.5	13
94	Possible origin of ferromagnetism in antiferromagnetic orthorhombic-YFeO3: A first-principles study. Ceramics International, 2018, 44, 13507-13512.	2.3	13
95	Deconvoluting Diffuse Reflectance Spectra for Retrieving Nanostructures' Size Details: An Easy and Efficient Approach. Journal of Physical Chemistry A, 2019, 123, 3607-3614.	1.1	13
96	Chronopotentiometric Deposition of Nanocobalt Oxide for Electrochromic Auxiliary Active Electrode Application. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000173.	0.8	12
97	Predicting Raman line shapes from amorphous silicon clusters for estimating shortâ€range order. Journal of Raman Spectroscopy, 2021, 52, 2081-2088.	1.2	12
98	Raman Scattering and Backscattering Studies of Silicon Nanocrystals Formed Using Sequential Ion Implantation. Silicon, 2014, 6, 65-71.	1.8	11
99	Effect of Hf doping on the structural, dielectric and optical properties of CaCu3Ti4O12 ceramic. Journal of Materials Science: Materials in Electronics, 2016, 27, 5878-5885.	1.1	11
100	Optimizing Photovoltaic Charge Generation of Hybrid Heterojunction Core–Shell Silicon Nanowire Arrays: An FDTD Analysis. ACS Omega, 2018, 3, 4123-4128.	1.6	11
101	Size dependence of Raman line-shape parameters due to confined phonons in silicon nanowires. Advances in Materials and Processing Technologies, 2020, 6, 669-676.	0.8	11
102	Porous graphene network from graphene oxide: Facile self-assembly and temperature dependent structural evolution. Materials Today Communications, 2021, 26, 101930.	0.9	11
103	MoS ₂ doping and concentration optimization for application-specific design of P3HT-viologen-based solid state electrochromic device. Journal Physics D: Applied Physics, 2022, 55, 375101.	1.3	11
104	Deposition of Single Phase Polycrystalline α-Fe2O3 Thin Film on Silicon and Silica Substrates by Spray Pyrolysis. Silicon, 2021, 13, 3361-3366.	1.8	10
105	Understanding the phase evolution with temperature in pure (BaFe12O19) and zinc-zirconium co-doped barium hexaferrite (BaZnZrFe10O19) samples using Pawley and Rietveld analysis. Materials Today Communications, 2021, 27, 102291.	0.9	10
106	Raman imaging for measuring homogeneity of dry binary blend: Combining microscopy with spectroscopy for technologists. Analytical Science Advances, 2020, 1, 89-96.	1.2	9
107	Nonlinear Temperature-Dependent Phonon Decay in Heavily Doped Silicon: Predominant Interferon-Mediated Cold Phonon Annihilation. Journal of Physical Chemistry Letters, 2022, 13, 5232-5239.	2.1	9
108	Charge Storage Capabilities of Fractal Porous Silicon Obtained Using Simple Metal Assisted Porosification Method. Silicon, 2023, 15, 167-175.	1.8	9

#	Article	IF	CITATIONS
109	Importance of frequency dependent magnetoresistance measurements in analysing the intrinsicality of magnetodielectric effect: A case study. Journal of Applied Physics, 2017, 122, .	1.1	8
110	Tent-Shaped Surface Morphologies of Silicon: Texturization by Metal Induced Etching. Silicon, 2018, 10, 2801-2807.	1.8	8
111	Synthesis and characterization of RFeO ₃ : experimental results and theoretical prediction. Advances in Materials and Processing Technologies, 2018, 4, 558-572.	0.8	8
112	Improved analytical framework for quantifying field emission from nanostructures. Materials Chemistry and Physics, 2020, 245, 122686.	2.0	8
113	Aloe Vera Flower Extract as a Botanical Resistive Memory Element: A Natural Memristor!. ACS Applied Electronic Materials, 2021, 3, 1556-1559.	2.0	8
114	Ultrafast carrier dynamics in a monolayer MoS ₂ at carrier densities well above Mott density. Journal of Physics Condensed Matter, 2022, 34, 155401.	0.7	8
115	Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications. Journal of Molecular Structure, 2017, 1139, 447-454.	1.8	7
116	Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
117	Brain Tumour Detection and Grading Using Raman Scattering: Analogy from Semiconductors for Solving Biological Problem. Advances in Materials and Processing Technologies, 2020, , 1-12.	0.8	7
118	Production of colored bi-layered bricks from stone processing wastes: Structural and spectroscopic characterization. Construction and Building Materials, 2021, 278, 122339.	3.2	7
119	Electrochemically reduced graphene oxide/nano-WO\$\$_{3}\$\$ composite-based supercapacitor electrodes for better energy storage. European Physical Journal: Special Topics, 2022, 231, 2927-2932.	1.2	7
120	Generalisation of phonon confinement model for interpretation of Raman line-shape from nano-silicon. Advances in Materials and Processing Technologies, 2018, 4, 227-233.	0.8	6
121	Low voltage colour modulation in hydrothermally grown Ni o nanoneedles for electrochromic application. IET Nanodielectrics, 2021, 4, 75-80.	2.0	6
122	Ion Conductive Phytic Acidâ€G Quadruplex Hydrogel as Electrolyte for Flexible Electrochromic Device. ChemNanoMat, 2021, 7, 613-619.	1.5	6
123	Spectroscopic Evidence of Phosphorous Heterocycle–DNA Interaction and its Verification by Docking Approach. Journal of Fluorescence, 2018, 28, 373-380.	1.3	5
124	Electronic energy loss (Se) sensitivity of electrochemically synthesized free-standing Cu nanowires irradiated by 120ÂMeV high energy ion beam of different atomic mass. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
125	Hydrothermally grown nano-WO ₃ electrochromic film: structural and Raman spectroscopic study. Advances in Materials and Processing Technologies, 2022, 8, 970-976.	0.8	5
126	Application of raman spectroscopy for characterization of natural stone sludge waste. Materials Today: Proceedings, 2020, 26, 681-684.	0.9	5

#	Article	IF	CITATIONS
127	Inverse Size Dependent Fano Parameter in Silicon Porous Wires: Consequence of Quasi-Continuum Flattening. Journal of Physical Chemistry C, 2021, 125, 12767-12773.	1.5	5
128	Comparative Account of Biomolecular Changes Post Epstein Barr Virus Infection of the Neuronal and Glial Cells Using Raman Microspectroscopy. ACS Chemical Neuroscience, 2022, 13, 1627-1637.	1.7	5
129	Temperature dependent phonon confinement in silicon nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 373, 133-135.	0.9	4
130	Laser Induced Effects in the Laser Etched Silicon Nanostructures. Japanese Journal of Applied Physics, 2008, 47, 8461-8463.	0.8	4
131	Back surface field approach and ITO/top electrode-based structural optimization of high efficient silicon solar cell. Advances in Materials and Processing Technologies, 2019, 5, 338-347.	0.8	4
132	Silver Columnar Thin-Film-Based Half-Wavelength Antennas for Bright Directional Emission from Nanodiamond Nitrogen-Vacancy Centers. Physical Review Applied, 2019, 11, .	1.5	4
133	Quantifying Size Dependent Electron Emission from Silicon Nanowires Array. Silicon, 2022, 14, 5585-5594.	1.8	4
134	A comparative study of ultrafast carrier dynamics near A, B, and C-excitons in a monolayer MoS2 at high excitation densities. Optical Materials, 2022, 126, 112224.	1.7	4
135	Early biomolecular changes in brain microvascular endothelial cells under Epstein–Barr virus influence: a Raman microspectroscopic investigation. Integrative Biology (United Kingdom), 2022, 14, 89-97.	0.6	4
136	Effect of Mn doping on dielectric response and optical band gap of LaGaO ₃ . Advances in Materials and Processing Technologies, 2017, 3, 539-549.	0.8	3
137	Surface plasmon coupling for selectively enhanced random lasing in periodically patterned silver columnar thin film metamaterials. Applied Physics Letters, 2020, 116, 241902.	1.5	3
138	Atypical Green Luminescence from Raw Cassia Siamea Extract: A Comparison with Red Emitting Tinospora Cordifolia. ACS Applied Bio Materials, 2021, 4, 5981-5986.	2.3	3
139	Effect of low energy ion irradiation on TiO\$\$_{2}\$\$-based hybrid nanostructures for enhanced photocatalytic activity. European Physical Journal: Special Topics, 2022, 231, 2941-2949.	1.2	3
140	Thermal Effects on Electron-Phonon Interactions in Silicon Nanostructures. Silicon, 2010, 2, 73-77.	1.8	2
141	Spectroscopic Investigation of well aligned Silicon Nano wires Fabricated by Metal Induced Etching. Materials Today: Proceedings, 2016, 3, 1835-1839.	0.9	2
142	Construction of well aligned highly dense Cobalt nanoneedles for efficient device application. Advances in Materials and Processing Technologies, 2017, 3, 627-631.	0.8	2
143	Expressing Raman spectral details through a Raman parameter information diagram. ChemTexts, 2019, 5, 1.	1.0	2
144	Structural and optical properties of polyaniline-green silver nanocomposite. Advances in Materials and Processing Technologies, 2019, 5, 172-180.	0.8	2

#	Article	IF	CITATIONS
145	Improved ionic solid/viologen hybrid electrochromic device using preâ€bleached Prussianâ€blue electrode. IET Nanodielectrics, 2021, 4, 193-200.	2.0	2
146	Post COVID-19 complications, adjunct therapy explored, and steroidal after effects. Canadian Journal of Chemistry, 2022, 100, 459-474.	0.6	2
147	Raman area- and thermal-mapping studies of faceted nano-crystalline α-Fe ₂ O ₃ thin films deposited by spray pyrolysis. Canadian Journal of Chemistry, 2022, 100, 507-511.	0.6	2
148	Photoinduced charge separation at Zn-Pd/TiO ₂ hybrids interface for enhanced electrochemical and photocatalytic activity. Journal Physics D: Applied Physics, O, , .	1.3	2
149	Origin of photoluminescence from silicon nanowires prepared by metal induced etching (MIE). AIP Conference Proceedings, 2015, , .	0.3	1
150	An insight of spirooxindole-annulated thiopyran – DNA interaction: spectroscopic and docking approach of these biological materials. Advances in Materials and Processing Technologies, 2017, 3, 339-352.	0.8	1
151	Spatial delocalization of absorption and emission process in silicon nanowires. Journal of Luminescence, 2019, 214, 116551.	1.5	1
152	Parallel or Interconnected Pores' Formation through Etchant Selective Silicon Porosification. Canadian Journal of Chemistry, 0, , .	0.6	1
153	Enhanced interfacial charge transfer on strain-induced 2D-1D/MoS ₂ -TiO ₂ heterostructures for electrochemical and photocatalytic applications. Nanotechnology, 2022, 33, 395704.	1.3	1
154	Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching. AIP Conference Proceedings, 2015, , .	0.3	0
155	Lasing based on periodically patterned anisotropic thin film metamaterial. , 2019, , .		0
156	Surface plasmon resonance mediated random lasing in thin film metamaterials. , 2020, , .		0
157	Synthesizing Luminescent Carbon from Condensed Tobacco Smoke: Bio-Waste for Possible Bioimaging. Canadian Journal of Chemistry, 0, , .	0.6	0