

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1425906/publications.pdf Version: 2024-02-01

νатец

#	Article	IF	CITATIONS
1	Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO ₂ effluxes. Biogeosciences, 2022, 19, 313-327.	3.3	8
2	EFFECTS OF BIOCHAR FROM OIL PALM BIOMASS ON SOIL PROPERTIES AND GROWTH PERFORMANCE OF OIL PALM SEEDLINGS. Journal of Sustainability Science and Management, 2022, 17, 183-200.	0.5	1
3	The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo. Journal of Applied Ecology, 2021, 58, 1764-1775.	4.0	26
4	Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Global Change Biology, 2020, 26, 989-1002.	9.5	37
5	Linking functional traits to multiscale statistics of leaf venation networks. New Phytologist, 2020, 228, 1796-1810.	7.3	18
6	Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems. Science of the Total Environment, 2019, 685, 1139-1151.	8.0	23
7	Leaf venation networks of Bornean trees: images and handâ€ŧraced segmentations. Ecology, 2019, 100, e02844.	3.2	7
8	Termites mitigate the effects of drought in tropical rainforest. Science, 2019, 363, 174-177.	12.6	98
9	Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytologist, 2019, 221, 1853-1865.	7.3	69
10	Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Global Change Biology, 2018, 24, 2913-2928.	9.5	98
11	Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil. Soil Biology and Biochemistry, 2018, 116, 323-332.	8.8	24
12	Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences, 2018, 15, 7435-7450.	3.3	41
13	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	3.3	47
14	Soil Organic Carbon (SOC) Equilibrium and Model Initialisation Methods: an Application to the Rothamsted Carbon (RothC) Model. Environmental Modeling and Assessment, 2017, 22, 215-229.	2.2	31
15	Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics. Global Biogeochemical Cycles, 2017, 31, 1435-1453.	4.9	22
16	The effects of burning and grazing on soil carbon dynamics in managed Peruvian tropical montane grasslands. Biogeosciences, 2017, 14, 5633-5646.	3.3	6
17	Complex controls on nitrous oxide flux across a large-elevation gradient in the tropical Peruvian Andes. Biogeosciences, 2017, 14, 5077-5097.	3.3	4
18	Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences, 2017, 14, 3669-3683.	3.3	35

Ү А Тен

#	Article	IF	CITATIONS
19	Drivers of atmospheric methane uptake by montane forest soils in the southern Peruvian Andes. Biogeosciences, 2016, 13, 4151-4165.	3.3	13
20	Quantifying wind and pressure effects on trace gas fluxes across the soil–atmosphere interface. Biogeosciences, 2015, 12, 7423-7434.	3.3	23
21	Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes. Biogeosciences, 2014, 11, 2325-2339.	3.3	31
22	Measuring gross <scp><scp>N₂O</scp></scp> production in soil: a reply to <scp>W</scp> ell and <scp>B</scp> utterbachâ€ <scp>B</scp> ahl. Global Change Biology, 2013, 19, 985-987.	9.5	4
23	The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, 2012, 153, 177-187.	4.8	113
24	Carbon dioxide exchange of a pepperweed (Lepidium latifoliumL.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?. Journal of Geophysical Research, 2011, 116, .	3.3	20
25	A test of a fieldâ€based ¹⁵ <scp>N</scp> –nitrous oxide pool dilution technique to measure gross <scp><scp>N</scp>₂<scp>O</scp></scp> production in soil. Global Change Biology, 2011, 17, 3577-3588.	9.5	52
26	Large Greenhouse Gas Emissions from a Temperate Peatland Pasture. Ecosystems, 2011, 14, 311-325.	3.4	114
27	Gross fluxes of methyl chloride and methyl bromide in a California oak-savanna woodland. Atmospheric Environment, 2010, 44, 2054-2061.	4.1	15
28	A decade of belowground reorganization following multiple disturbances in a subtropical wet forest. Plant and Soil, 2009, 323, 197-212.	3.7	21
29	Hydrologic regulation of gross methyl chloride and methyl bromide uptake from Alaskan Arctic tundra. Global Change Biology, 2009, 15, 330-345.	9.5	22
30	Water, temperature, and vegetation regulation of methyl chloride and methyl bromide fluxes from a shortgrass steppe ecosystem. Global Change Biology, 2008, 14, 77-91.	9.5	21
31	Suppression of methanogenesis by dissimilatory Fe(III)â€reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux. Global Change Biology, 2008, 14, 413-422.	9.5	57
32	Chloroform emissions from the Alaskan Arctic tundra. Geophysical Research Letters, 2008, 35, .	4.0	22
33	Methyl halide and methane fluxes in the northern Alaskan coastal tundra. Journal of Geophysical Research, 2007, 112, .	3.3	42
34	Effects of soil structure destruction on methane production and carbon partitioning between methanogenic pathways in tropical rain forest soils. Journal of Geophysical Research, 2006, 111, .	3.3	18
35	Carbon isotope fractionation by methane-oxidizing bacteria in tropical rain forest soils. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	19
36	Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology, 2005, 11, 1283-1297.	9.5	122