

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1425820/publications.pdf Version: 2024-02-01

lie Luu

#	Article	IF	CITATIONS
1	Effect of gelatin type on the structure and properties of microfibrillated cellulose reinforced gelatin edible films. Journal of Applied Polymer Science, 2022, 139, 52119.	1.3	8
2	Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications. Food Packaging and Shelf Life, 2022, 31, 100800.	3.3	29
3	Efficient and clean preparation of pure collagen fiber woven materials from bovine hides using alkali-activated alkaline protease. Journal of Environmental Chemical Engineering, 2022, 10, 107205.	3.3	1
4	Optimization of dialdehyde soluble soybean polysaccharide: preparation by response surface methodology for cleaner leather tanning. RSC Advances, 2022, 12, 7506-7515.	1.7	7
5	Pyrolysis of sulfuric acid-treated chrome-tanned leather wastes: Kinetics, mechanism and evolved gas analysis. Waste Management, 2022, 143, 105-115.	3.7	13
6	Assessment of the pyrolysis kinetics and mechanism of vegetable-tanned leathers. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105502.	2.6	8
7	Black wattle tanninâ€immobilized mesostructured collagen as a promising adsorbent for cationic organic dyes (methylene blue) removal in batch and continuous fixedâ€bed systems. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
8	Ionically conductive gelatin-based hybrid composite hydrogels with high mechanical strength, self-healing, and freezing-tolerant properties. European Polymer Journal, 2022, 172, 111230.	2.6	10
9	Soluble Soybean Polysaccharide/Carrageenan Antibacterial Nanocomposite Films Containing Green Synthesized Silver Nanoparticles. ACS Applied Polymer Materials, 2022, 4, 5608-5618.	2.0	14
10	Green synthesis of silver nanoparticles using soluble soybean polysaccharide and their application in antibacterial coatings. International Journal of Biological Macromolecules, 2021, 166, 567-577.	3.6	58
11	Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. LWT - Food Science and Technology, 2021, 138, 110607.	2.5	54
12	Gelatin/Oxidized Konjac Glucomannan Composite Hydrogels with High Resistance to Large Deformation for Tissue Engineering Applications. ACS Applied Bio Materials, 2021, 4, 1536-1543.	2.3	14
13	In-situ synthesis and immobilization of silver nanoparticles on microfibrillated cellulose for long-term antibacterial applications. Cellulose, 2021, 28, 6287.	2.4	16
14	Charge induced crystal distortion and morphology remodeling: Formation of Mn-CoP nanowire @ Mn-CoOOH nanosheet electrocatalyst with rich edge dislocation defects. Applied Catalysis B: Environmental, 2021, 292, 120172.	10.8	79
15	Extraction, purification, bioactivities and prospect of lentinan: A review. Biocatalysis and Agricultural Biotechnology, 2021, 37, 102163.	1.5	22
16	Highly efficient and selective removal of anionic dyes from water using a cellulose nanofibril/chitosan sponge prepared by dehydrothermal treatment. Journal of Environmental Chemical Engineering, 2021, 9, 105745.	3.3	7
17	Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for noncompressible hemorrhage. International Journal of Biological Macromolecules, 2020, 154, 1185-1193.	3.6	41
18	High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. International Journal of Biological Macromolecules, 2020, 164, 1776-1784.	3.6	31

Jie Liu

#	Article	lF	CITATIONS
19	Kinetics and mechanism of thermal degradation of aldehyde tanned leather. Thermochimica Acta, 2020, 691, 178717.	1.2	15
20	A Biomimetic Hybrid Hydrogel Based on the Interactions between Amino Hydroxyapatite and Gelatin/Gellan Gum. Macromolecular Materials and Engineering, 2020, 305, 2000188.	1.7	14
21	Soluble soybean polysaccharide/nano zinc oxide antimicrobial nanocomposite films reinforced with microfibrillated cellulose. International Journal of Biological Macromolecules, 2020, 159, 793-803.	3.6	44
22	Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging and Shelf Life, 2020, 24, 100485.	3.3	102
23	A combined kinetic study on the pyrolysis of chrome shavings by thermogravimetry. Carbon Resources Conversion, 2020, 3, 156-163.	3.2	8
24	Mathematical modeling of bovine hides swelling behavior by response surface methodology for minimization of sulfide pollution in leather manufacture. Journal of Cleaner Production, 2019, 237, 117800.	4.6	13
25	Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability. International Journal of Biological Macromolecules, 2019, 135, 561-568.	3.6	38
26	A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. International Journal of Biological Macromolecules, 2019, 137, 45-53.	3.6	31
27	Colorimetric Detection of Sulfide Anions via Redox-Modulated Surface Chemistry and Morphology of Au-Hg Nanorods. International Journal of Analytical Chemistry, 2019, 2019, 1-9.	0.4	4
28	Generation of edge dislocation defects in Co ₃ O ₄ catalysts: an efficient tactic to improve catalytic activity for oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10745-10750.	5.2	51
29	Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications. Carbohydrate Polymers, 2019, 216, 45-53.	5.1	125
30	Kinetics and mechanism of thermal degradation of vegetable-tanned leather fiber. Journal of Leather Science and Engineering, 2019, 1, .	2.7	26
31	Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2018, 115, 385-392.	3.6	55
32	Activated Carbon-Entrapped Microfibrilated Cellulose Films As An Effective Adsorbent For Removing Organic Dye From Aqueous Effluent. Journal of Wood Chemistry and Technology, 2018, 38, 15-27.	0.9	9
33	Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. International Journal of Biological Macromolecules, 2018, 107, 283-289.	3.6	95
34	Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution. International Journal of Biological Macromolecules, 2017, 103, 254-260.	3.6	50
35	Tanninâ€immobilized cellulose microspheres as effective adsorbents for removing cationic dye (Methylene Blue) from aqueous solution. Journal of Chemical Technology and Biotechnology, 2017, 92, 1276-1284.	1.6	48
36	Effect of Molecular Size of Modifying Agents on the Properties of Gelatin films. Food Science and Technology Research, 2017, 23, 119-127.	0.3	3

Jie Liu

#	Article	IF	CITATIONS
37	A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure. RSC Advances, 2016, 6, 71999-72007.	1.7	51
38	Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide. Colloids and Surfaces B: Biointerfaces, 2016, 140, 287-296.	2.5	44
39	Structural Properties of Gelatin-Chitosan Composite Film Modified by Polyol. Asian Journal of Chemistry, 2015, 27, 1287-1292.	0.1	0
40	Compatibility and properties of biodegradable blend films with gelatin and poly(vinyl alcohol). Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 351-356.	0.4	17
41	Preparation and properties of sisal microfibril/gelatin biomass composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 45-52.	3.8	17
42	Effects of SiO ₂ and <i>In Situ</i> Crosslinking on the Swelling and Thermal Properties of Poly(vinyl Alcohol)/SiO ₂ Hybrid Films. Advanced Materials Research, 2011, 266, 180-183.	0.3	1
43	Conversion of Protein and Polysaccharide Wastes into Value-Added Composite Products. ACS Symposium Series, 0, , 219-260.	0.5	1