
Shozo Suto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1425544/publications.pdf Version: 2024-02-01

SHOZO SUTO

#	Article	IF	CITATIONS
1	Periodic corner holes on the Si(111)-7×7 surface can trap silver atoms. Nature Communications, 2022, 13, .	12.8	4
2	Anisotropic surface phonon dispersion of a deuterium-terminated Si(110)-(1 × 1) surface studied by high-resolution electron-energy-loss spectroscopy and first-principles calculations: Isotope effect. Surface Science, 2020, 692, 121527.	1.9	0
3	Morphological evolution of Ag nanoclusters grown on hydrogen-terminated si(111)-(1Â×Â1) surface: Appearance of quantum size effect at room-temperature. Surface Science, 2019, 690, 121483.	1.9	2
4	Atomistic investigation on the initial stage of growth and interface formation of Fe on H-terminated Si(111)-(1†×†1) surface. Surface Science, 2019, 686, 52-57.	1.9	4
5	Wet chemical preparation and isotope exchange process of H/D-terminated Si(111) and Si(110) studied by adsorbate vibrational analysis. Japanese Journal of Applied Physics, 2017, 56, 025701.	1.5	5
6	Anisotropic electronic band structure of intrinsic Si(110) studied by angle-resolved photoemission spectroscopy and first-principles calculations. Physical Review B, 2017, 96, .	3.2	4
7	Effects of the deposition rate on growth modes of Ag islands on the hydrogen-terminated Si(111)-(1 ×â€9 surface: The role of surface energy and quantum size effect. Journal of Applied Physics, 2017, 122, 095303.	‰1) 2.5	3
8	Surface phonon dispersion on hydrogen-terminated Si(110)-(1 × 1) surfaces studied by first-principles calculations. Journal of Chemical Physics, 2015, 143, 214702.	3.0	5
9	Morphology and atomic structure of hydrogen-terminated Si(110)-(1 × 1) surfaces prepared by a wet chemical process. Surface Science, 2015, 632, 135-141.	1.9	5
10	Anisotropic surface phonon dispersion of the hydrogen-terminated Si(110)-(1×1) surface: One-dimensional phonons propagating along the glide planes. Journal of Chemical Physics, 2014, 140, 104709.	3.0	7
11	Science Laboratory Classes for Freshmen in Tohoku University: Introductory Science Experiments. , 2014, , .		0
12	Preparation and Characterization of Ultraclean H:Si(111)-(1*1) Surfaces Studied by HREELS, AFM and STM-STS. E-Journal of Surface Science and Nanotechnology, 2009, 7, 557-562.	0.4	0
13	The optical spectra of confined polygermanes: from bulk film down to nanosize layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 73-76.	0.8	1
14	Optical Spectra of Polygermane/Mesoporous Silica Nanocomposites. Macromolecular Symposia, 2008, 265, 148-155.	0.7	2
15	Preparation of an Ultraclean and Atomically Controlled Hydrogen-Terminated Si(111)-(1× 1) Surface Revealed by High Resolution Electron Energy Loss Spectroscopy, Atomic Force Microscopy, and Scanning Tunneling Microscopy: Aqueous NH ₄ F Etching Process of Si(111). Japanese Journal of Applied Physics. 2007. 46. 5701.	1.5	27
16	Enhancement of Boron Diffusion in Silicon by Continuous Wave CO ₂ Laser Irradiation. Japanese Journal of Applied Physics, 2007, 46, 5085.	1.5	0
17	Surface phonon dispersion of the deuterium-terminatedSi(111)â^'(1×1)surface. Physical Review B, 2007, 75,	3.2	13
18	Mesoporous silica/polysilane nanocomposites monitoring of optical spectra and self-assembly. Studies in Surface Science and Catalysis, 2007, 170, 1486-1493.	1.5	0

Shozo Suto

#	Article	IF	CITATIONS
19	Step-Induced Anisotropic Growth of Pentacene Thin Film Crystals on a Hydrogen-Terminated Si(111) Surface. Crystal Growth and Design, 2007, 7, 439-444.	3.0	13
20	Diffusion and Clustering of Ag Atoms on Si(111)7 ×7 Surface. Japanese Journal of Applied Physics, 2006, 45, 2056-2058.	1.5	8
21	New Reconstructions of Platinum Silicide Surface. Japanese Journal of Applied Physics, 2006, 45, 2166-2169.	1.5	4
22	HREELS, STM, and STS study of CH3-terminated Si(111)-(1×1) surface. Journal of Chemical Physics, 2004, 121, 10660-10667.	3.0	43
23	<title>Effect of self-organization in poly(di-n-hexylsilane) films</title> ., 2003, , .		0
24	Optical properties of silylene-biphenylene copolymer films. Journal of Luminescence, 2002, 99, 197-203.	3.1	1
25	HREELS study of C70 molecules adsorbed on a Si(1 1 1)-(7×7) surface. Applied Surface Science, 2001, 169-170, 147-152.	6.1	1
26	Temperature dependence of exciton dynamics in poly(di-n-hexylsilane). Physical Review B, 2001, 63, .	3.2	16
27	Exciton-exciton scattering in disordered linear chains of poly(di-n-hexylsilane). Physical Review B, 2001, 64, .	3.2	7
28	Theory and numerical study of exciton dynamics in a disordered linear chain. Journal of Chemical Physics, 2001, 114, 2775-2783.	3.0	16
29	Exciton–exciton scattering in poly(di-n-hexylsilane) films. Journal of Luminescence, 2000, 87-89, 933-935.	3.1	5
30	Temperature dependence of the electronic structure ofC60films adsorbed onSi(001)â^'(2×1)andSi(111)â^'(7×7)surfaces. Physical Review B, 1999, 60, 2579-2591.	3.2	48
31	Adsorption process of metastable molecular oxygen on a Si(111)-(7×7)surface. Physical Review B, 1999, 60, R8465-R8468.	3.2	31
32	Thermal induced transition in the bonding nature of C60 molecules adsorbed on a Si(111)–(7×7) surface. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 413-418.	1.7	4
33	Adsorption and thermal reaction of C70 on Si(111)-(7×7) and Si(100)-(2×1) surfaces: comparison with C60. Applied Surface Science, 1999, 144-145, 653-656.	6.1	5
34	Thermal-dependent electronic structure at the interface of C60-adsorbed Si(111)-(7×7) surface. Surface Science, 1999, 438, 248-253.	1.9	4
35	Electronic State of the Carbon 60 Adsorbed Silicon Surfaces Shinku/Journal of the Vacuum Society of Japan, 1999, 42, 143-146.	0.2	0
36	Vibrational Modes and Structure of C60 on Si(111) 7 × 7 and Graphite Surfaces —Study by HREELS-STM. Springer Series in Cluster Physics, 1999, , 443-451.	0.3	0

Shozo Suto

#	Article	IF	CITATIONS
37	Exciton dynamics and hidden structures of poly(di-n-hexylsilane) film: Experimental and theoretical study. Journal of Luminescence, 1998, 76-77, 486-490.	3.1	9
38	Exciton dynamics in disordered linear chains of poly(di-n-hexylsilane): Experiment and theory. Physical Review B, 1998, 58, 5032-5042.	3.2	29
39	Bonding state of theC60molecule adsorbed on aSi(111)â^'(7×7)surface. Physical Review B, 1998, 58, 13951-13956.	3.2	55
40	SiC film formation and growth by the thermal reaction of aC60film adsorbed on a Si(111)-(7×7) surface: Bonding nature ofC60molecules and SiC-film surface phonons. Physical Review B, 1998, 57, 9003-9014.	3.2	28
41	Vibrational properties and charge transfer ofC60adsorbed on Si(111)-(7×7)and Si(100)-(2×1)surfaces. Physical Review B, 1997, 56, 7439-7445.	3.2	61
42	The growth mechanism of (–Cu–O–) strings on a Ag(110) surface studied by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and high resolution electron energy loss spectroscopy. Journal of Chemical Physics, 1997, 107, 10185-10190.	3.0	8
43	VIBRATIONAL PROPERTIES AND STRUCTURE OF C60 THIN FILMS ON Si(111)-(7×7) AND GRAPHITE SURFACES. Surface Review and Letters, 1996, 03, 927-931.	1.1	14
44	Excited state dynamics and relaxation of poly(methylphenylsilane) film. Journal of Luminescence, 1995, 66-67, 341-344.	3.1	3
45	Exciton Dynamics of Poly(di-n-hexylsilane) Film. Japanese Journal of Applied Physics, 1995, 34, 185.	1.5	5
46	Vibrational Modes of \$f C_{60}\$ Fullerene on \$f Si(111)7imes 7\$ Surface: Estimation of Charge Transfer from Silicon Dangling Bonds to \$f C_{60}\$ Molecules. Japanese Journal of Applied Physics, 1994, 33, L1489-L1492.	1.5	15
47	Picosecond luminescence approach to charge transfer in a tetraphenylporphyrin/SnO2 interface. Surface Science, 1988, 205, 230-240.	1.9	3
48	Elastic Properties of NaCl: OH at Low Temperatures. Journal of the Physical Society of Japan, 1985, 54, 175-185.	1.6	22
49	Millimeter wave spectrophotometry by the Ledatron. Journal of Infrared, Millimeter and Terahertz Waves, 1985, 6, 1139-1146.	0.6	3
50	Infrared Absorption of OH- in NaCl Crystal. Journal of the Physical Society of Japan, 1984, 53, 449-455.	1.6	7
51	Millimeter Wave Absorption of OH- in NaCl Crystal. Journal of the Physical Society of Japan, 1984, 53, 438-448.	1.6	16
52	A Millimeter Wave Spectrophotometry by a Wide Band Oscillator of the Ledatron. Japanese Journal of Applied Physics, 1983, 22, 640-644.	1.5	5
53	Construction of a Wide Band Millimeter Wave Oscillator of the Ledatron. Japanese Journal of Applied Physics, 1981, 20, 1611-1612.	1.5	1
54	The Millimeter Wave Absorption in the Paraelectric Defect System of NaCl: OH-Measured by a Ledatron Oscillator. Journal of the Physical Society of Japan, 1980, 49, 1639-1640.	1.6	3