Seog Bae Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1425451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemokines and Glycoprotein120 Produce Pain Hypersensitivity by Directly Exciting Primary Nociceptive Neurons. Journal of Neuroscience, 2001, 21, 5027-5035.	3.6	454
2	Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nature Medicine, 2015, 21, 1326-1331.	30.7	272
3	A Critical Role of Toll-like Receptor 2 in Nerve Injury-induced Spinal Cord Glial Cell Activation and Pain Hypersensitivity. Journal of Biological Chemistry, 2007, 282, 14975-14983.	3.4	264
4	Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain, 2006, 121, 219-231.	4.2	188
5	Activation of Vanilloid Receptor 1 (VR1) by Eugenol. Journal of Dental Research, 2003, 82, 781-785.	5.2	168
6	The Status of Voltage-Dependent Calcium Channels in α1EKnock-Out Mice. Journal of Neuroscience, 2000, 20, 8566-8571.	3.6	151
7	TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: Differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia, 2006, 53, 248-256.	4.9	151
8	TRPV1 in GABAergic Interneurons Mediates Neuropathic Mechanical Allodynia and Disinhibition of the Nociceptive Circuitry in the Spinal Cord. Neuron, 2012, 74, 640-647.	8.1	136
9	Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nature Neuroscience, 2013, 16, 910-918.	14.8	133
10	Functional Expression of Thermo-transient Receptor Potential Channels in Dental Primary Afferent Neurons. Journal of Biological Chemistry, 2006, 281, 17304-17311.	3.4	118
11	Coapplication of Lidocaine and the Permanently Charged Sodium Channel Blocker QX-314 Produces a Long-lasting Nociceptive Blockade in Rodents. Anesthesiology, 2009, 111, 127-137.	2.5	103
12	Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren's syndrome. Laboratory Investigation, 2004, 84, 1430-1438.	3.7	98
13	Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell, 2019, 176, 716-728.e18.	28.9	98
14	Curcumin Produces an Antihyperalgesic Effect <i>via</i> Antagonism of TRPV1. Journal of Dental Research, 2010, 89, 170-174.	5.2	97
15	Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain, 2009, 144, 84-94.	4.2	96
16	Direct Activation of Transient Receptor Potential Vanilloid 1(TRPV1) by Diacylglycerol (DAG). Molecular Pain, 2008, 4, 1744-8069-4-42.	2.1	93
17	Eugenol Inhibits Sodium Currents in Dental Afferent Neurons. Journal of Dental Research, 2006, 85, 900-904.	5.2	88
18	Lysophosphatidylcholine Increases Neutrophil Bactericidal Activity by Enhancement of Azurophil Granule-Phagosome Fusion via Glycine·GlyRα2/TRPM2/p38 MAPK Signaling. Journal of Immunology, 2010, 184, 4401-4413.	0.8	87

Seog Bae Oh

#	Article	IF	CITATIONS
19	Role of TRP Channels in Pain Sensation. Advances in Experimental Medicine and Biology, 2011, 704, 615-636.	1.6	87
20	Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314. Journal of Neurophysiology, 2013, 109, 1704-1712.	1.8	85
21	Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: Implication in Wallerian degeneration. Biochemical and Biophysical Research Communications, 2006, 350, 742-747.	2.1	80
22	Requirement of homotypic NK-cell interactions through 2B4(CD244)/CD48 in the generation of NK effector functions. Blood, 2006, 107, 3181-3188.	1.4	78
23	Cellular and Molecular Mechanisms of Dental Nociception. Journal of Dental Research, 2013, 92, 948-955.	5.2	78
24	Regulation of calcium currents by chemokines and their receptors. Journal of Neuroimmunology, 2002, 123, 66-75.	2.3	74
25	Eugenol Inhibits Calcium Currents in Dental Afferent Neurons. Journal of Dental Research, 2005, 84, 848-851.	5.2	74
26	Differential Changes in TRPV1 Expression After Trigeminal Sensory Nerve Injury. Journal of Pain, 2008, 9, 280-288.	1.4	71
27	Membrane-Delimited Coupling of TRPV1 and mGluR5 on Presynaptic Terminals of Nociceptive Neurons. Journal of Neuroscience, 2009, 29, 10000-10009.	3.6	69
28	The F-actin-microtubule crosslinker Shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development (Cambridge), 2007, 134, 1767-1777.	2.5	65
29	High-resolution transcriptome analysis reveals neuropathic pain gene-expression signatures in spinal microglia after nerve injury. Pain, 2016, 157, 964-976.	4.2	64
30	Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience, 2016, 318, 22-33.	2.3	60
31	Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain Research, 2006, 1072, 208-214.	2.2	59
32	Characterization of Dental Nociceptive Neurons. Journal of Dental Research, 2011, 90, 771-776.	5.2	56
33	Acquisition of in vitro and in vivo functionality of Nurr1â€induced dopamine neurons. FASEB Journal, 2006, 20, 2553-2555.	0.5	54
34	Selectively targeting pain in the trigeminal system. Pain, 2010, 150, 29-40.	4.2	51
35	Ïf1 receptors activate astrocytes via p38 <scp>MAPK</scp> phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. British Journal of Pharmacology, 2014, 171, 5881-5897.	5.4	50
36	P2X ₁ and P2X ₄ receptor currents in mouse macrophages. British Journal of Pharmacology, 2007, 152, 1283-1290.	5.4	49

#	Article	IF	CITATIONS
37	Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacological Research, 2013, 74, 56-67.	7.1	49
38	Cytotoxic Immunity in Peripheral Nerve Injury and Pain. Frontiers in Neuroscience, 2020, 14, 142.	2.8	49
39	Activation of transient receptor potential ankyrin 1 by eugenol. Neuroscience, 2014, 261, 153-160.	2.3	46
40	Experience-dependent modification of mechanisms of long-term depression. Nature Neuroscience, 2006, 9, 170-172.	14.8	45
41	Molecular Basis of Cav2.3 Calcium Channels in Rat Nociceptive Neurons. Journal of Biological Chemistry, 2007, 282, 4757-4764.	3.4	44
42	Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain, 2015, 156, 1046-1059.	4.2	44
43	Directed Induction of Functional Motor Neuron-Like Cells from Genetically Engineered Human Mesenchymal Stem Cells. PLoS ONE, 2012, 7, e35244.	2.5	42
44	Eugenol Inhibits K ⁺ Currents in Trigeminal Ganglion Neurons. Journal of Dental Research, 2007, 86, 898-902.	5.2	40
45	Recent advances in basic research on the trigeminal ganglion. Journal of Physiological Sciences, 2016, 66, 381-386.	2.1	38
46	CpG oligodeoxynucleotides induce expression of proinflammatory cytokines and chemokines in astrocytes: the role of c-Jun N-terminal kinase in CpG ODN-mediated NF-ήB activation. Journal of Neuroimmunology, 2004, 153, 50-63.	2.3	37
47	TRPM2 contributes to LPC-induced intracellular Ca 2+ influx and microglial activation. Biochemical and Biophysical Research Communications, 2017, 485, 301-306.	2.1	37
48	Toll-like receptor 2 contributes to glial cell activation and heme oxygenase-1 expression in traumatic brain injury. Neuroscience Letters, 2008, 431, 123-128.	2.1	36
49	Modulation of Ca _V 2.3 Calcium Channel Currents by Eugenol. Journal of Dental Research, 2008, 87, 137-141.	5.2	35
50	Substance P Sensitizes P2X3 in Nociceptive Trigeminal Neurons. Journal of Dental Research, 2010, 89, 1154-1159.	5.2	35
51	Histamine H1 Receptor Induces Cytosolic Calcium Increase and Aquaporin Translocation in Human Salivary Gland Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 403-412.	2.5	33
52	Piezo2 Expression in Mechanosensitive Dental Primary Afferent Neurons. Journal of Dental Research, 2017, 96, 931-937.	5.2	33
53	Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia, 2007, 55, 712-722.	4.9	31
54	Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons. Korean Journal of Physiology and Pharmacology, 2008, 12, 315.	1.2	31

#	Article	IF	CITATIONS
55	Eugenol reverses mechanical allodynia after peripheral nerve injury by inhibiting hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Pain, 2011, 152, 2108-2116.	4.2	31
56	TRPM7 Mediates Mechanosensitivity in Adult Rat Odontoblasts. Journal of Dental Research, 2018, 97, 1039-1046.	5.2	31
57	Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism. Carcinogenesis, 2014, 35, 1652-1660.	2.8	30
58	Spinal sigma-1 receptor activation increases the production of d-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain. Pharmacological Research, 2015, 100, 353-364.	7.1	30
59	Adult Rat Odontoblasts Lack Noxious Thermal Sensitivity. Journal of Dental Research, 2009, 88, 328-332.	5.2	28
60	Acid Evoked Thermal Hyperalgesia Involves Peripheral P2Y1 Receptor Mediated TRPV1 Phosphorylation in a Rodent Model of Thrombus Induced Ischemic Pain. Molecular Pain, 2014, 10, 1744-8069-10-2.	2.1	28
61	A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone. Toxins, 2017, 9, 227.	3.4	28
62	Clonidine, an alphaâ€2 adrenoceptor agonist relieves mechanical allodynia in oxaliplatinâ€induced neuropathic mice; potentiation by spinal p38 MAPK inhibition without motor dysfunction and hypotension. International Journal of Cancer, 2016, 138, 2466-2476.	5.1	27
63	Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Archives of Oral Biology, 2014, 59, 1266-1271.	1.8	24
64	Expression of Na+/HCO3â^' cotransporter and its role in pH regulation in mouse parotid acinar cells. Biochemical and Biophysical Research Communications, 2003, 304, 593-598.	2.1	22
65	Mechanosensitivity of voltage-gated K+currents in rat trigeminal ganglion neurons. Journal of Neuroscience Research, 2006, 83, 1373-1380.	2.9	21
66	Sinomenine produces peripheral analgesic effects via inhibition of voltage-gated sodium currents. Neuroscience, 2017, 358, 28-36.	2.3	21
67	The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Molecular Brain, 2021, 14, 99.	2.6	21
68	CD4 dependence of gp120IIIB-CXCR4 interaction is cell-type specific. Journal of Neuroimmunology, 2003, 140, 1-12.	2.3	20
69	Acute inflammation reveals GABA _A receptor-mediated nociception in mouse dorsal root ganglion neurons via PGE ₂ receptor 4 signaling. Physiological Reports, 2017, 5, e13178.	1.7	20
70	Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons. Korean Journal of Physiology and Pharmacology, 2018, 22, 173.	1.2	19
71	TRP Channels in Dental Pain. Open Pain Journal, 2013, 6, 31-36.	0.4	19
72	Rat odontoblasts may use glutamate to signal dentin injury. Neuroscience, 2016, 335, 54-63.	2.3	18

#	Article	IF	CITATIONS
73	R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons. Korean Journal of Physiology and Pharmacology, 2010, 14, 45.	1.2	17
74	Histamine 1 receptor-Gβγ-cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock. Molecular Brain, 2016, 9, 49.	2.6	17
75	Role of peripheral sigmaâ€1 receptors in ischaemic pain: Potential interactions with <scp>ASIC</scp> and P2X receptors. European Journal of Pain, 2016, 20, 594-606.	2.8	17
76	Peripheral GABAA receptor-mediated signaling facilitates persistent inflammatory hypersensitivity. Neuropharmacology, 2018, 135, 572-580.	4.1	17
77	Hedonic drinking engages a supraspinal inhibition of thermal nociception in adult rats. Pain, 2019, 160, 1059-1069.	4.2	17
78	Effects of pilocarpine on the secretory acinar cells in human submandibular glands. Life Sciences, 2006, 79, 2441-2447.	4.3	16
79	Extracellular ATP Induces Calcium Signaling in Odontoblasts. Journal of Dental Research, 2017, 96, 200-207.	5.2	16
80	Molecular mechanisms underlying calcium current modulation by nociceptin. NeuroReport, 2004, 15, 2205-2209.	1.2	15
81	The analgesic effect of refeeding on acute and chronic inflammatory pain. Scientific Reports, 2019, 9, 16873.	3.3	14
82	Electrophysiological analysis of neuronal chemokine receptors. Methods, 2003, 29, 335-344.	3.8	13
83	A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity. Molecular Pain, 2017, 13, 174480691668890.	2.1	13
84	Epigenetic Modification of CFTR in Head and Neck Cancer. Journal of Clinical Medicine, 2020, 9, 734.	2.4	13
85	Group I mGluR regulates the polarity of spike-timing dependent plasticity in substantia gelatinosa neurons. Biochemical and Biophysical Research Communications, 2006, 347, 509-516.	2.1	12
86	Neurochemical Properties of Dental Primary Afferent Neurons. Experimental Neurobiology, 2012, 21, 68-74.	1.6	12
87	Molecular expression of Mg2+ regulator TRPM7 and CNNM4 in rat odontoblasts. Archives of Oral Biology, 2018, 96, 182-188.	1.8	12
88	Pharmacopuncture With Scolopendra subspinipes Suppresses Mechanical Allodynia in Oxaliplatin-Induced Neuropathic Mice and Potentiates Clonidine-induced Anti-allodynia Without Hypotension or Motor Impairment. Journal of Pain, 2018, 19, 1157-1168.	1.4	12
89	Eugenol as Local Anesthetic. , 2013, , 4001-4015.		11
90	Effect of nitric oxide on hyperpolarization-activated current in substantia gelatinosa neurons of rats. Biochemical and Biophysical Research Communications, 2005, 338, 1648-1653.	2.1	10

#	Article	IF	CITATIONS
91	Role of Purinergic Receptor in Alpha Fodrin Degradation in Par C5 Cells. Journal of Dental Research, 2009, 88, 927-932.	5.2	10
92	Molecular cloning and functional expression of a sodium bicarbonate cotransporter from guinea-pig parotid glands. Biochemical and Biophysical Research Communications, 2006, 342, 1114-1122.	2.1	9
93	Sphingosine-1-phosphate Signaling in Human Submandibular Cells. Journal of Dental Research, 2010, 89, 1148-1153.	5.2	9
94	Painful Neuron-Microglia Interactions in the Trigeminal Sensory System. Open Pain Journal, 2010, 3, 14-28.	0.4	8
95	Trans-activation of TRPV1 by D1R in mouse dorsal root ganglion neurons. Biochemical and Biophysical Research Communications, 2015, 465, 832-837.	2.1	7
96	Electrophysiological and Morphological Properties of α and Î ³ Motoneurons in the Rat Trigeminal Motor Nucleus. Frontiers in Cellular Neuroscience, 2018, 12, 9.	3.7	7
97	Alpha 2 adrenoceptor agonist guanabenz directly inhibits hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels in mesencephalic trigeminal nucleus neurons. European Journal of Pharmacology, 2019, 854, 320-327.	3.5	7
98	Neurophysiology of Orofacial Pain. , 2017, , 1-23.		7
99	Antinociceptive effect of intrathecal P7C3 via GABA in a rat model of inflammatory pain. European Journal of Pharmacology, 2021, 899, 174029.	3.5	6
100	Patterns of brain c-Fos expression in response to feeding behavior in acute and chronic inflammatory pain condition. NeuroReport, 2021, 32, 1269-1277.	1.2	6
101	GABAergic and serotonergic modulation of calcium currents in rat trigeminal motoneurons. Biochemical and Biophysical Research Communications, 2003, 309, 58-65.	2.1	5
102	Involvement of transient receptor potential vanilloid-1 in calcium current inhibition by capsaicin. NeuroReport, 2006, 17, 145-149.	1.2	5
103	Generation of resonanceâ€dependent oscillation by <scp>mG</scp> lu <scp>R</scp> â€ <scp>I</scp> activation switches single spiking to bursting in mesencephalic trigeminal sensory neurons. European Journal of Neuroscience, 2015, 41, 998-1012.	2.6	5
104	A role of CB1R in inducing Î, rhythm coordination between the gustatory and gastrointestinal insula. Scientific Reports, 2016, 6, 32529.	3.3	5
105	Neurophysiology of Orofacial Pain. , 2017, , 1-23.		5
106	Mitochondrial Reactive Oxygen Species Elicit Acute and Chronic Itch via Transient Receptor Potential Canonical 3 Activation in Mice. Neuroscience Bulletin, 2022, , 1.	2.9	5
107	NKG2D ligation relieves 2B4â€mediated NKâ€cell selfâ€tolerance in mice. European Journal of Immunology, 2014, 44, 1802-1813.	2.9	4
108	Lack of correlation between spinal microgliosis and long-term development of tactile hypersensitivity in two different sciatic nerve crush injury. Molecular Pain, 2021, 17, 174480692110113.	2.1	4

#	Article	IF	CITATIONS
109	Naloxone-induced analgesia mediated by central kappa opioid system in chronic inflammatory pain. Brain Research, 2021, 1762, 147445.	2.2	4
110	Ion Channels with Mechanosensitivity in the Nervous System. , 2009, , 23-49.		4
111	Why Do Neurons Express Chemokine Receptors?. , 2002, , 273-288.		4
112	Common bacterial metabolite indole directly activates nociceptive neuron through transient receptor potential ankyrin 1 channel. Pain, 2022, 163, 1530-1541.	4.2	4
113	The Nature of Noradrenergic Volume Transmission From Locus Coeruleus to Brainstem Mesencephalic Trigeminal Sensory Neurons. Frontiers in Cellular Neuroscience, 2022, 16, 841239.	3.7	4
114	Effects of Somatostatin on the Responses of Rostrally Projecting Spinal Dorsal Horn Neurons to Noxious Stimuli in Cats. Korean Journal of Physiology and Pharmacology, 2008, 12, 253.	1.2	3
115	A distinct functional distribution of $\hat{l}\pm$ and \hat{l}^3 motoneurons in the rat trigeminal motor nucleus. Brain Structure and Function, 2017, 222, 3231-3239.	2.3	3
116	Inhibition of GluR Current in Microvilli of Sensory Neurons via Na+-Microdomain Coupling Among GluR, HCN Channel, and Na+/K+ Pump. Frontiers in Cellular Neuroscience, 2018, 12, 113.	3.7	3
117	Involvement of cannabinoid type 1 receptor in fasting-induced analgesia. Molecular Pain, 2020, 16, 174480692096947.	2.1	3
118	Upregulation of Toll-like Receptor 2 in Dental Primary Afferents Following Pulp Injury. Experimental Neurobiology, 2021, 30, 329-340.	1.6	3
119	Expression of CaV3.1 T-type Calcium Channels in Acutely Isolated Adult Rat Odontoblasts. Archives of Oral Biology, 2020, 118, 104864.	1.8	2
120	In Vitro Visualization of Cell-to-Cell Interactions Between Natural Killer Cells and Sensory Neurons. Methods in Molecular Biology, 2022, 2463, 251-268.	0.9	2
121	A Novel Carbamoyloxy Arylalkanoyl Arylpiperazine Compound (SKL-NP) Inhibits Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channel Currents in Rat Dorsal Root Ganglion Neurons. Korean Journal of Physiology and Pharmacology, 2012, 16, 237.	1.2	1
122	Update on dentin hypersensitivity: with the focus on hydrodynamic theory and mechanosensitive ion channels. International Journal of Oral Biology: Official Journal of the Korean Academy of Oral Biology and the UCLA Dental Research Institute, 2019, 44, 71-76.	0.1	1
123	Anterior insular-nucleus accumbens pathway controls refeeding-induced analgesia under chronic inflammatory pain condition. Neuroscience, 2022, , .	2.3	1
124	Correction: Lysophosphatidylcholine Increases Neutrophil Bactericidal Activity by Enhancement of Azurophil Granule-Phagosome Fusion via Glycine·GlyRα2/TRPM2/p38 MAPK Signaling. Journal of Immunology, 2010, 185, 1985-1985.	0.8	0
125	Neurophysiology of Orofacial Pain. , 2019, , 1749-1771.		0