
Muhammad Raziq Rahimi Kooh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2014, 2, 1434-1444.	6.7	185
2	Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. AEJ - Alexandria Engineering Journal, 2015, 54, 1253-1263.	6.4	101
3	Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. Nanomaterials, 2020, 10, 493.	4.1	66
4	The removal of rhodamine B dye from aqueous solution using <i>Casuarina equisetifolia</i> needles as adsorbent. Cogent Environmental Science, 2016, 2, 1140553.	1.6	65
5	Highly Sensitive and Tunable Plasmonic Sensor Based on a Nanoring Resonator with Silver Nanorods. Nanomaterials, 2020, 10, 1399.	4.1	65
6	Ultrawide Bandgap and High Sensitivity of a Plasmonic Metal-Insulator-Metal Waveguide Filter with Cavity and Baffles. Nanomaterials, 2020, 10, 2030.	4.1	59
7	Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104134.	5.3	57
8	Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles. Chinese Journal of Physics, 2021, 71, 286-299.	3.9	50
9	Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environmental Earth Sciences, 2016, 75, 1.	2.7	47
10	Combined experimental and DFT–TDDFT study of photo-active constituents of Canarium odontophyllum for DSSC application. Chemical Physics Letters, 2013, 585, 121-127.	2.6	46
11	Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Scientific Reports, 2021, 11, 18515.	3.3	45
12	Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method. Environmental Monitoring and Assessment, 2016, 188, 108.	2.7	43
13	Azolla pinnata: An Efficient Low Cost Material for Removal of Methyl Violet 2B by Using Adsorption Method. Waste and Biomass Valorization, 2015, 6, 547-559.	3.4	40
14	Batch Adsorption Studies on the Removal of Acid Blue 25 from Aqueous Solution Using Azolla pinnata and Soya Bean Waste. Arabian Journal for Science and Engineering, 2016, 41, 2453-2464.	1.1	38
15	Removal of Methyl Violet 2B from Aqueous Solution Using <i>Casuarina equisetifolia</i> Needle. ISRN Environmental Chemistry, 2013, 2013, 1-8.	0.9	37
16	The Use of <i>Gigantochloa</i> Bamboo-Derived Biochar for the Removal of Methylene Blue from Aqueous Solution. Adsorption Science and Technology, 2022, 2022, .	3.2	36
17	Remediation of Rhodamine B Dye from Aqueous Solution Using <i>Casuarina equisetifolia</i> Cone Powder as a Low-Cost Adsorbent. Advances in Physical Chemistry, 2016, 2016, 1-7.	2.0	31
18	Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis. Applied Water Science, 2017, 7, 3573-3581.	5.6	30

Muhammad Raziq Rahimi

#	Article	IF	CITATIONS
19	Improved Refractive Index-Sensing Performance of Multimode Fano-Resonance-Based Metal-Insulator-Metal Nanostructures. Nanomaterials, 2021, 11, 2097.	4.1	30
20	Efficient adsorption of malachite green dye using Artocarpus odoratissimus leaves with artificial neural network modelling. , 0, 101, 313-324.		30
21	Jackfruit seed as low-cost adsorbent for removal of malachite green: artificial neural network and random forest approaches. Environmental Earth Sciences, 2018, 77, 1.	2.7	28
22	Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies. Applied Water Science, 2018, 8, 1.	5.6	28
23	DFT/TDDFT and Experimental Studies of Natural Pigments Extracted from Black Tea Waste for DSSC Application. International Journal of Photoenergy, 2013, 2013, 1-8.	2.5	26
24	Phytoextraction potential of water fern (<i>Azolla pinnata</i>) in the removal of a hazardous dye, methyl violet 2B: Artificial neural network modelling. International Journal of Phytoremediation, 2018, 20, 424-431.	3.1	25
25	Effective and Simple NaOH-Modification Method to Remove Methyl Violet Dye via Ipomoea aquatica Roots. Adsorption Science and Technology, 2021, 2021, 1-12.	3.2	25
26	Removal of methyl violet 2B dye from aqueous solution using Nepenthes rafflesiana pitcher and leaves. Applied Water Science, 2017, 7, 3859-3868.	5.6	24
27	Batch adsorption studies on the removal of malachite green from water by chemicallyÂmodified <i>Azolla pinnata</i> . Desalination and Water Treatment, 2016, 57, 14632-14646.	1.0	22
28	Ultrahigh Sensitivity of a Plasmonic Pressure Sensor with a Compact Size. Nanomaterials, 2021, 11, 3147.	4.1	19
29	Copper modified activated bamboo charcoal to enhance adsorption of heavy metals from industrial wastewater. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100562.	2.9	18
30	The Removal of Ruthenium-Based Complexes N3 Dye from DSSC Wastewater Using Copper Impregnated KOH-Activated Bamboo Charcoal. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	17
31	Investigation of the sorption characteristics of water lettuce (WL) as a potential low-cost biosorbent for the removal of methyl violet 2B. Desalination and Water Treatment, 2016, 57, 8319-8329.	1.0	14
32	Density functional theory (DFT) and time - dependent density functional theory (TDDFT) studies of selected ancient colourants as sensitizers in dye-sensitized solar cells. Journal of the National Science Foundation of Sri Lanka, 2014, 42, 169.	0.2	14
33	Mid infrared sensing structure based on a metal–insulator–metal waveguides with a triangular-shaped resonator. Optics Communications, 2022, 516, 128282.	2.1	14
34	Aquatic plant, Ipomoea aquatica, as a potential low-cost adsorbent for the effective removal of toxic methyl violet 2B dye. Applied Water Science, 2020, 10, 1.	5.6	13
35	Environmentally friendly adsorbent derived from rock melon skin for effective removal of toxic brilliant green dye: linear versus non-linear analyses. International Journal of Environmental Analytical Chemistry, 2023, 103, 4904-4923.	3.3	12
36	Surface modification of <i>Artocarpus odoratissimus</i> leaves using NaOH, SDS and EDTA to enhance adsorption of toxic crystal violet dye. International Journal of Environmental Analytical Chemistry, 2023, 103, 1836-1854.	3.3	9

3

#	Article	IF	CITATIONS
37	Phytoextraction capability of Azolla pinnata in the removal of rhodamine B from aqueous solution: artificial neural network and random forests approaches. Applied Water Science, 2019, 9, 1.	5.6	8
38	Theoretical Study of CO Adsorption Interactions with Cr-Doped Tungsten Oxide/Graphene Composites for Gas Sensor Application. ACS Omega, 2022, 7, 528-539.	3.5	8
39	A Theoretical Insight of Cr Dopant in Tungsten Oxide for Gas Sensor Application. Materials Today Communications, 2021, 28, 102508.	1.9	6
40	Preparation and Evaluation ofAcetabularia-Modified Carbon Paste Electrode in Anodic Stripping Voltammetry of Copper and Lead Ions. Journal of Chemistry, 2013, 2013, 1-9.	1.9	2
41	Resonant enhancement of photoluminescence from dye molecules in lithium niobate substrate using photoinduced silver deposition with concentration dependence. Results in Physics, 2022, 39, 105751.	4.1	2