Juan Antonio Lopez-Raez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424601/publications.pdf

Version: 2024-02-01

53 papers 5,903 citations

30 h-index 223390 49 g-index

54 all docs 54 docs citations

54 times ranked 5535 citing authors

#	Article	IF	CITATIONS
1	Strigolactones: New players in the nitrogen–phosphorus signalling interplay. Plant, Cell and Environment, 2022, 45, 512-527.	2.8	25
2	Wheat root trait plasticity, nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions. Journal of Plant Physiology, 2021, 256, 153297.	1.6	19
3	DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist, 2021, 229, 548-562.	3.5	22
4	Analyzing the Effect of Strigolactones on the Motility Behavior of Rhizobia. Methods in Molecular Biology, 2021, 2309, 91-103.	0.4	1
5	Are strigolactones a key in plant–parasitic nematodes interactions? An intriguing question. Plant and Soil, 2021, 462, 591-601.	1.8	9
6	Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination. Plants, 2021, 10, 348.	1.6	3
7	Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell and Environment, 2020, 43, 1655-1668.	2.8	35
8	Histochemical and Molecular Quantification of Arbuscular Mycorrhiza Symbiosis. Methods in Molecular Biology, 2020, 2083, 293-299.	0.4	3
9	Arbuscular Mycorrhizal Fungal Gene Expression Analysis by Real-Time PCR. Methods in Molecular Biology, 2020, 2146, 157-170.	0.4	3
10	Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation. Journal of Experimental Botany, 2019, 70, 5631-5642.	2.4	40
11	Editorial: The Role of Plant Hormones in Plant-Microbe Symbioses. Frontiers in Plant Science, 2019, 10, 1391.	1.7	29
12	The Role of Strigolactones in Plant–Microbe Interactions. , 2019, , 121-142.		11
13	A new UHPLCâ€MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochemical Analysis, 2019, 30, 110-116.	1.2	26
14	Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping?. Frontiers in Plant Science, 2018, 9, 752.	1.7	89
15	Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Current Genetics, 2017, 63, 201-213.	0.8	31
16	Strigolactones in Plant Interactions with Beneficial and Detrimental Organisms: The Yin and Yang. Trends in Plant Science, 2017, 22, 527-537.	4.3	173
17	Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiological and Molecular Plant Pathology, 2016, 94, 100-107.	1.3	24
18	How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?. Planta, 2016, 243, 1375-1385.	1.6	79

#	Article	IF	CITATIONS
19	Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Science, 2016, 245, 119-127.	1.7	61
20	Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell and Environment, 2016, 39, 441-452.	2.8	321
21	Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS ONE, 2015, 10, e0142339.	1.1	23
22	Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 2015, 205, 1431-1436.	3.5	331
23	Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Science, 2015, 230, 59-69.	1.7	49
24	Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 2015, 394, 1-19.	1.8	84
25	Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biology, 2014, 14, 171.	1.6	50
26	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	0.9	78
27	Do strigolactones contribute to plant defence?. Molecular Plant Pathology, 2014, 15, 211-216.	2.0	173
28	Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 2013, 170, 47-55.	1.6	299
29	Tomato strigolactones. Plant Signaling and Behavior, 2013, 8, e22785.	1.2	26
30	Chemical Signalling in the Arbuscular Mycorrhizal Symbiosis: Biotechnological Applications. Soil Biology, 2013, , 215-232.	0.6	12
31	Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Soil Biology, 2013, , 289-307.	0.6	28
32	The tomato <i><scp>CAROTENOID CLEAVAGE DIOXYGENASE</scp>8</i> (<i><scp>S</scp> <scp>CCD</scp>8</i>) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 2012, 196, 535-547.	3.5	250
33	Communication in the Rhizosphere, a Target for Pest Management. , 2012, , 109-133.		15
34	Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, 2012, 38, 651-664.	0.9	757
35	Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible?. , 2012, , 199-211.		0
36	Strigolactones: a cry for help in the rhizosphere. Botany, 2011, 89, 513-522.	0.5	78

#	Article	IF	CITATIONS
37	Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology, 2011, 168, 294-297.	1.6	137
38	Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones? Â Â Â. Plant Physiology, 2011, 155, 721-734.	2.3	534
39	Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 2010, 187, 343-354.	3.5	243
40	AM symbiosis alters phenolic acid content in tomato roots. Plant Signaling and Behavior, 2010, 5, 1138-1140.	1.2	44
41	Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 2010, 61, 2589-2601.	2.4	238
42	Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms., 2010,, 193-207.		89
43	Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Management Science, 2009, 65, 471-477.	1.7	99
44	Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 2008, 178, 863-874.	3.5	419
45	Susceptibility of the Tomato Mutant <i>High Pigment-2^{dg}</i> (<i>hp-2^{dg}</i>) to <i>Orobanche</i> spp. Infection. Journal of Agricultural and Food Chemistry, 2008, 56, 6326-6332.	2.4	38
46	Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signaling and Behavior, 2008, 3, 963-965.	1.2	39
47	Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 2007, 12, 224-230.	4.3	418
48	Characterization of a strawberry late-expressed and fruit-specific peptide methionine sulphoxide reductase. Physiologia Plantarum, 2006, 126, 129-139.	2.6	18
49	FaQR, Required for the Biosynthesis of the Strawberry Flavor Compound 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, Encodes an Enone Oxidoreductase. Plant Cell, 2006, 18, 1023-1037.	3.1	156
50	A strawberry fruit-specific and ripening-related gene codes for a HyPRP protein involved in polyphenol anchoring. Plant Molecular Biology, 2004, 55, 763-780.	2.0	29
51	Comparative study between two strawberry pyruvate decarboxylase genes along fruit development and ripening, post-harvest and stress conditions. Plant Science, 2004, 166, 835-845.	1.7	39
52	A strawberry fruit-specific and ripening-related gene codes for a HyPRP protein involved in polyphenol anchoring. Plant Molecular Biology, 2004, 55, 763-80.	2.0	18
53	Cloning, expression and immunolocalization pattern of a cinnamyl alcohol dehydrogenase gene from strawberry (Fragariaxananassa cv. Chandler). Journal of Experimental Botany, 2002, 53, 1723-1734.	2.4	86