José F MartÃ-nez-Trinidad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424593/publications.pdf

Version: 2024-02-01

164 papers 2,673 citations

236925 25 h-index 223800 46 g-index

184 all docs

184 docs citations

184 times ranked

2134 citing authors

#	Article	IF	CITATIONS
1	A survey on feature selection methods for mixed data. Artificial Intelligence Review, 2022, 55, 2821-2846.	15.7	26
2	Algorithm for computing all the shortest reducts based on a new pruning strategy. Information Sciences, 2022, 585, 113-126.	6.9	2
3	An Oversampling Method for Class Imbalance Problems on Large Datasets. Applied Sciences (Switzerland), 2022, 12, 3424.	2.5	9
4	Encoding hieroglyph segments to represent hieroglyphs following the bag of visual word model for retrieval. Expert Systems With Applications, 2022, 201, 116983.	7.6	1
5	Automatic filter coefficient calculation in lifting scheme wavelet transform for lossless image compression. Visual Computer, 2021, 37, 957-972.	3.5	1
6	Unsupervised Feature Selection Methodology for Analysis of Bacterial Taxonomy Profiles. Lecture Notes in Computer Science, 2021, , 47-56.	1.3	0
7	Experimental Comparison of Oversampling Methods for Mixed Datasets. Lecture Notes in Computer Science, 2021, , 78-88.	1.3	O
8	A review of unsupervised feature selection methods. Artificial Intelligence Review, 2020, 53, 907-948.	15.7	340
9	Mining clique frequent approximate subgraphs from multi-graph collections. Applied Intelligence, 2020, 50, 878-892.	5.3	3
10	A systematic evaluation of filter Unsupervised Feature Selection methods. Expert Systems With Applications, 2020, 162, 113745.	7.6	10
11	A Supervised Filter Feature Selection method for mixed data based on Spectral Feature Selection and Information-theory redundancy analysis. Pattern Recognition Letters, 2020, 138, 321-328.	4.2	25
12	K-means based method for overlapping document clustering. Journal of Intelligent and Fuzzy Systems, 2020, 39, 2127-2135.	1.4	2
13	An Explainable Artificial Intelligence Model for Clustering Numerical Databases. IEEE Access, 2020, 8, 52370-52384.	4.2	29
14	Improved fast partitional clustering algorithm for text clustering. Journal of Intelligent and Fuzzy Systems, 2020, 39, 2137-2145.	1.4	6
15	MinReduct: A new algorithm for computing the shortest reducts. Pattern Recognition Letters, 2020, 138, 177-184.	4.2	11
16	A PSO-based algorithm for mining association rules using a guided exploration strategy. Pattern Recognition Letters, 2020, 138, 8-15.	4.2	20
17	On the Relation Between the Concepts of Irreducible Testor and Minimal Transversal. IEEE Access, 2019, 7, 82809-82816.	4.2	7
18	The Mexican Conference on Pattern Recognition After Ten Editions: A Scientometric Study. Lecture Notes in Computer Science, 2019, , 315-326.	1.3	0

#	Article	IF	CITATIONS
19	Improved Hieroglyph Representation for Image Retrieval. Journal on Computing and Cultural Heritage, 2019, 12, 1-15.	2.1	3
20	Bag of k-nearest visual words for hieroglyph retrieval. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4981-4990.	1.4	2
21	Frequent similar pattern mining using non Boolean similarity functions. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4931-4944.	1.4	2
22	Deterministic oversampling methods based on SMOTE. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4945-4955.	1.4	10
23	Cost-Sensitive Pattern-Based classification for Class Imbalance problems. IEEE Access, 2019, 7, 60411-60427.	4.2	16
24	Gate Detection for Micro Aerial Vehicles using a Single Shot Detector. IEEE Latin America Transactions, 2019, 17, 2045-2052.	1.6	11
25	Unsupervised Outlier detection algorithm based on k-NN and fuzzy logic. , 2019, , .		1
26	An improved algorithm for partial clustering. Expert Systems With Applications, 2019, 121, 282-291.	7.6	10
27	A review of conceptual clustering algorithms. Artificial Intelligence Review, 2019, 52, 1267-1296.	15.7	34
28	On the Use of Constructs for Rule-Based Classification: A Case Study. Lecture Notes in Computer Science, 2019, , 327-335.	1.3	1
29	A new algorithm for reduct computation based on gap elimination and attribute contribution. Information Sciences, 2018, 435, 111-123.	6.9	9
30	Closed frequent similar pattern mining: Reducing the number of frequent similar patterns without information loss. Expert Systems With Applications, 2018, 96, 271-283.	7.6	16
31	Extensions to AGraP Algorithm for Finding a Reduced Set of Inexact Graph Patterns. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32, 1860012.	1.2	2
32	Ranking Based Unsupervised Feature Selection Methods: An Empirical Comparative Study in High Dimensional Datasets. Lecture Notes in Computer Science, 2018, , 205-218.	1.3	1
33	Accurate and fast prototype selection based on the notion of relevant and border prototypes. Journal of Intelligent and Fuzzy Systems, 2018, 34, 2923-2934.	1.4	4
34	Revisiting two-stage feature selection based on coverage policies for text classification. Journal of Intelligent and Fuzzy Systems, 2018, 34, 2949-2957.	1.4	1
35	Mining Generalized Closed Patterns from Multi-graph Collections. Lecture Notes in Computer Science, 2018, , 10-18.	1.3	4
36	Class-Specific Reducts vs. Classic Reducts in a Rule-Based Classifier: A Case Study. Lecture Notes in Computer Science, 2018, , 23-30.	1.3	5

#	Article	IF	CITATIONS
37	Including Foreground and Background Information in Maya Hieroglyph Representation. Lecture Notes in Computer Science, 2018, , 238-247.	1.3	1
38	Multi-graph Frequent Approximate Subgraph Mining for Image Clustering. Lecture Notes in Computer Science, 2018, , 133-140.	1.3	0
39	The Impact of Basic Matrix Dimension on the Performance of Algorithms for Computing Typical Testors. Lecture Notes in Computer Science, 2018, , 41-50.	1.3	3
40	Extension of Canonical Adjacency Matrices for Frequent Approximate Subgraph Mining on Multi-Graph Collections. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31, 1750025.	1,2	5
41	Evaluation of quality measures for contrast patterns by using unseen objects. Expert Systems With Applications, 2017, 83, 104-113.	7.6	17
42	A new Unsupervised Spectral Feature Selection Method for mixed data: A filter approach. Pattern Recognition, 2017, 72, 314-326.	8.1	53
43	PBC4cip: A new contrast pattern-based classifier for class imbalance problems. Knowledge-Based Systems, 2017, 115, 100-109.	7.1	59
44	A Novel Contrast Pattern Selection Method forÂClass Imbalance Problems. Lecture Notes in Computer Science, 2017, , 42-52.	1.3	1
45	An Algorithm for Computing Goldman FuzzyÂReducts. Lecture Notes in Computer Science, 2017, , 3-12.	1.3	0
46	Fast-BR vs. Fast-CT_EXT: An Empirical Performance Study. Lecture Notes in Computer Science, 2017, , 127-136.	1.3	2
47	COMPRESIÓN DE IMÃGENES SIN PÉRDIDA USANDO CLASIFICADOR 1-NN PARA ADAPTAR LOS COEFICIENTES FILTROS LIFTING. Dyna (Spain), 2017, 92, 143-143.	DE 0.2	0
48	A new algorithm for computing reducts based on the binary discernibility matrix. Intelligent Data Analysis, 2016, 20, 317-337.	0.9	11
49	Adjustment of Wavelet Filters for Image Compression Using Artificial Intelligence. Polibits, 2016, 53, 23-30.	0.0	1
50	SMOTE-D a Deterministic Version of SMOTE. Lecture Notes in Computer Science, 2016, , 177-188.	1.3	21
51	Linear model optimizer vs Neural Networks: A comparison for improving the quality and saving of LED-Lighting control systems. , 2016, , .		3
52	Effect of class imbalance on quality measures for contrast patterns: An experimental study. Information Sciences, 2016, 374, 179-192.	6.9	17
53	A new hybrid filter–wrapper feature selection method for clustering based on ranking. Neurocomputing, 2016, 214, 866-880.	5.9	102
54	A new algorithm for approximate pattern mining in multi-graph collections. Knowledge-Based Systems, 2016, 109, 198-207.	7.1	7

#	Article	IF	CITATIONS
55	A Glance to the Goldman's Testors from the Point of View of Rough Set Theory. Lecture Notes in Computer Science, 2016, , 189-197.	1.3	1
56	Detecting Pneumatic Failures on Temporary Immersion Bioreactors. Lecture Notes in Computer Science, 2016, , 293-302.	1.3	2
57	Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neurocomputing, 2016, 175, 935-947.	5.9	143
58	Improving graph-based image classification by using emerging patterns as attributes. Engineering Applications of Artificial Intelligence, 2016, 50, 215-225.	8.1	9
59	AJUSTE DE FILTROS WAVELET UTILIZANDO K-NN PARA COMPRESIÓN DE IMÃGENES SIN PERDIDA. Dyna New Technologies, 2016, 3, [14 p.]-[14 p.].	0.1	0
60	Mining patterns for clustering using unsupervised decision trees. Intelligent Data Analysis, 2015, 19, 1297-1310.	0.9	5
61	A fast hardware software platform for computing irreducible testors. Expert Systems With Applications, 2015, 42, 9612-9619.	7.6	11
62	Correlation of Resampling Methods for Contrast Pattern Based Classifiers. Lecture Notes in Computer Science, 2015, , 93-102.	1.3	0
63	Mining patterns for clustering on numerical datasets using unsupervised decision trees. Knowledge-Based Systems, 2015, 82, 70-79.	7.1	28
64	Finding the best diversity generation procedures for mining contrast patterns. Expert Systems With Applications, 2015, 42, 4859-4866.	7.6	28
65	A Different Approach for Pruning Micro-clusters in Data Stream Clustering. Lecture Notes in Computer Science, 2015, , 33-43.	1.3	1
66	On the relation between rough set reducts and typical testors. Information Sciences, 2015, 294, 152-163.	6.9	25
67	AGraP: an algorithm for mining frequent patterns in a single graph using inexact matching. Knowledge and Information Systems, 2015, 44, 385-406.	3.2	10
68	A New Method Based on Graph Transformation for FAS Mining in Multi-graph Collections. Lecture Notes in Computer Science, 2015, , 13-22.	1.3	3
69	Prototype Selection for Graph Embedding Using Instance Selection. Lecture Notes in Computer Science, 2015, , 84-92.	1.3	0
70	Computing Constructs by Using Typical Testor Algorithms. Lecture Notes in Computer Science, 2015, , 44-53.	1.3	3
71	An empirical comparison among quality measures for pattern based classifiers. Intelligent Data Analysis, 2014, 18, S5-S17.	0.9	10
72	Combining hybrid rule ordering strategies based on netconf and a novel satisfaction mechanism for CAR-based classifiers. Intelligent Data Analysis, 2014, 18, S89-S100.	0.9	3

#	Article	IF	Citations
73	Studying Netconf in Hybrid Rule Ordering Strategies for Associative Classification. Lecture Notes in Computer Science, 2014, , 51-60.	1.3	О
74	Mining maximal frequent patterns in a single graph using inexact matching. Knowledge-Based Systems, 2014, 66, 166-177.	7.1	16
75	A survey of emerging patterns for supervised classification. Artificial Intelligence Review, 2014, 42, 705-721.	15.7	34
76	Are Reducts and Typical Testors the Same?. Lecture Notes in Computer Science, 2014, , 294-301.	1.3	2
77	Graph Clustering via Inexact Patterns. Lecture Notes in Computer Science, 2014, , 391-398.	1.3	2
78	A New Method for Skeleton Pruning. Lecture Notes in Computer Science, 2014, , 301-310.	1.3	0
79	On Two Definitions of Reduct. Lecture Notes in Computer Science, 2014, , 31-40.	1.3	0
80	Water quality assessment in shrimp culture using an analytical hierarchical process. Ecological Indicators, 2013, 29, 148-158.	6.3	63
81	Mining frequent patterns and association rules using similarities. Expert Systems With Applications, 2013, 40, 6823-6836.	7.6	30
82	Automatic discovery of Web Query Interfaces using machine learning techniques. Journal of Intelligent Information Systems, 2013, 40, 85-108.	3.9	11
83	An algorithm based on density and compactness for dynamic overlapping clustering. Pattern Recognition, 2013, 46, 3040-3055.	8.1	20
84	OClustR: A new graph-based algorithm for overlapping clustering. Neurocomputing, 2013, 121, 234-247.	5.9	31
85	InstanceRank based on borders for instance selection. Pattern Recognition, 2013, 46, 365-375.	8.1	26
86	Information Retrieval Based on a Query Document Using Maximal Frequent Sequences. , 2013, , .		1
87	Combining Techniques to Find the Number of Bins for Discretization. , 2013, , .		2
88	An Empirical Study of Oversampling and Undersampling Methods for LCMine an Emerging Pattern Based Classifier. Lecture Notes in Computer Science, 2013, , 264-273.	1.3	13
89	New Penalty Scheme for Optimal Subsequence Bijection. Lecture Notes in Computer Science, 2013 , , $206-213$.	1.3	4
90	Feature Space Reduction for Graph-Based Image Classification. Lecture Notes in Computer Science, 2013, , 246-253.	1.3	2

#	Article	IF	CITATIONS
91	An Empirical Study of Oversampling and Undersampling for Instance Selection Methods on Imbalance Datasets. Lecture Notes in Computer Science, 2013, , 262-269.	1.3	28
92	Easy Categorization of Attributes in Decision Tables Based on Basic Binary Discernibility Matrix. Lecture Notes in Computer Science, 2013, , 302-310.	1.3	3
93	Building fast decision trees from large training sets. Intelligent Data Analysis, 2012, 16, 649-664.	0.9	15
94	A dynamic clustering algorithm for building overlapping clusters. Intelligent Data Analysis, 2012, 16, 211-232.	0.9	6
95	Hybrid feature selection method for biomedical datasets. , 2012, , .		5
96	Genetic Algorithm for Multidimensional Scaling over Mixed and Incomplete Data. Lecture Notes in Computer Science, 2012, , 226-235.	1.3	1
97	Assessment and prediction of air quality using fuzzy logic and autoregressive models. Atmospheric Environment, 2012, 60, 37-50.	4.1	78
98	CAR-NF: A classifier based on specific rules with high netconf. Intelligent Data Analysis, 2012, 16, 49-68.	0.9	16
99	Hardware–software platform for computing irreducible testors. Expert Systems With Applications, 2012, 39, 2203-2210.	7.6	10
100	Immediate water quality assessment in shrimp culture using fuzzy inference systems. Expert Systems With Applications, 2012, 39, 10571-10582.	7.6	52
101	Classification based on specific rules and inexact coverage. Expert Systems With Applications, 2012, 39, 11203-11211.	7.6	4
102	Nested Dichotomies Based on Clustering. Lecture Notes in Computer Science, 2012, , 162-169.	1.3	7
103	A Modification of the Lernmatrix for Real Valued Data Processing. Lecture Notes in Computer Science, 2012, , 487-494.	1.3	0
104	CAR-NF + : An Improved Version of CAR-NF Classifier. Lecture Notes in Computer Science, 2012, , 455-46	21. 3	0
105	RP-Miner: a relaxed prune algorithm for frequent similar pattern mining. Knowledge and Information Systems, 2011, 27, 451-471.	3.2	11
106	Fuzzy emerging patterns for classifying hard domains. Knowledge and Information Systems, 2011, 28, 473-489.	3.2	29
107	Decision tree induction using a fast splitting attribute selection for large datasets. Expert Systems With Applications, 2011, 38, 14290-14290.	7.6	10
108	General framework for class-specific feature selection. Expert Systems With Applications, 2011, 38, 10018-10024.	7.6	44

#	Article	IF	CITATIONS
109	Fast k most similar neighbor classifier for mixed data (tree k-MSN). Pattern Recognition, 2010, 43, 873-886.	8.1	11
110	A new fast prototype selection method based on clustering. Pattern Analysis and Applications, 2010, 13, 131-141.	4.6	139
111	A review of instance selection methods. Artificial Intelligence Review, 2010, 34, 133-143.	15.7	284
112	LCMine: An efficient algorithm for mining discriminative regularities and its application in supervised classification. Pattern Recognition, 2010, 43, 3025-3034.	8.1	40
113	Hybrid Feature Selection Method for Supervised Classification Based on Laplacian Score Ranking. Lecture Notes in Computer Science, 2010, , 260-269.	1.3	6
114	A new algorithm for mining frequent connected subgraphs based on adjacency matrices. Intelligent Data Analysis, 2010, 14, 385-403.	0.9	5
115	Classifying Using Specific Rules with High Confidence. , 2010, , .		2
116	Algorithms for mining frequent itemsets in static and dynamic datasets. Intelligent Data Analysis, 2010, 14, 419-435.	0.9	6
117	Full duplicate candidate pruning for frequent connected subgraph mining. Integrated Computer-Aided Engineering, 2010, 17, 211-225.	4.6	12
118	Multivariate Decision Trees Using Different Splitting Attribute Subsets for Large Datasets. Lecture Notes in Computer Science, 2010, , 370-373.	1.3	2
119	Using Non Boolean Similarity Functions for Frequent Similar Pattern Mining. Lecture Notes in Computer Science, 2010, , 374-378.	1.3	1
120	A New Emerging Pattern Mining Algorithm and Its Application in Supervised Classification. Lecture Notes in Computer Science, 2010, , 150-157.	1.3	9
121	New Dissimilarity Measures for Ultraviolet Spectra Identification. Lecture Notes in Computer Science, 2010, , 220-229.	1.3	4
122	Cascading an Emerging Pattern Based Classifier. Lecture Notes in Computer Science, 2010, , 240-249.	1.3	5
123	Designing RBFNNs Using Prototype Selection. Lecture Notes in Computer Science, 2010, , 189-198.	1.3	0
124	Prototype selection based on sequential search. Intelligent Data Analysis, 2009, 13, 599-631.	0.9	7
125	Taking Advantage of Class-Specific Feature Selection. Lecture Notes in Computer Science, 2009, , 1-8.	1.3	3
126	Using Maximum Similarity Graphs to Edit Nearest Neighbor Classifiers. Lecture Notes in Computer Science, 2009, , 489-496.	1.3	10

#	Article	IF	Citations
127	A New Incremental Algorithm for Overlapped Clustering. Lecture Notes in Computer Science, 2009, , 497-504.	1.3	7
128	Duplicate Candidate Elimination and Fast Support Calculation for Frequent Subgraph Mining. Lecture Notes in Computer Science, 2009, , 292-299.	1.3	2
129	Mining Frequent Similar Patterns on Mixed Data. Lecture Notes in Computer Science, 2008, , 136-144.	1.3	6
130	A New Graph-Based Algorithm for Clustering Documents. , 2008, , .		4
131	Gait Recognition Based on Silhouette, Contour and Classifier Ensembles. Lecture Notes in Computer Science, 2008, , 527-534.	1.3	5
132	On the selection of base prototypes for LAESA and TLAESA classifiers. , 2008, , .		2
133	A Novel Incremental Algorithm for Frequent Itemsets Mining in Dynamic Datasets. Lecture Notes in Computer Science, 2008, , 145-152.	1.3	3
134	Mining Frequent Connected Subgraphs Reducing the Number of Candidates. Lecture Notes in Computer Science, 2008, , 365-376.	1.3	12
135	Prototype Selection Via Prototype Relevance. Lecture Notes in Computer Science, 2008, , 153-160.	1.3	15
136	Fast k Most Similar Neighbor Classifier for Mixed Data Based on a Tree Structure and Approximating-Eliminating. Lecture Notes in Computer Science, 2008, , 364-371.	1.3	0
137	Fast k Most Similar Neighbor Classifier for Mixed Data Based on Approximating and Eliminating. , 2008, , 697-704.		1
138	Object Selection Based on Clustering and Border Objects. Advances in Intelligent and Soft Computing, 2007, , 27-34.	0.2	12
139	Restricted Sequential Floating Search Applied to Object Selection. Lecture Notes in Computer Science, 2007, , 694-702.	1.3	6
140	Mixed Data Object Selection Based on Clustering and Border Objects., 2007,, 674-683.		1
141	FPGA-Based Architecture for Computing Testors. Lecture Notes in Computer Science, 2007, , 188-197.	1.3	6
142	Fast Most Similar Neighbor Classifier for Mixed Data. Lecture Notes in Computer Science, 2007, , 146-158.	1.3	0
143	Fast k Most Similar Neighbor Classifier for Mixed Data Based on a Tree Structure. , 2007, , 407-416.		1
144	A New Algorithm for Fast Discovery of Maximal Sequential Patterns in a Document Collection. Lecture Notes in Computer Science, 2006, , 514-523.	1.3	28

#	Article	IF	Citations
145	Conceptual K-Means Algorithm Based on Complex Features. Lecture Notes in Computer Science, 2006, , 491-501.	1.3	1
146	Sequential Search for Decremental Edition. Lecture Notes in Computer Science, 2005, , 280-285.	1.3	5
147	Edition Schemes Based on BSE. Lecture Notes in Computer Science, 2005, , 360-367.	1.3	4
148	Classifier Selection Based on Data Complexity Measures. Lecture Notes in Computer Science, 2005, , 586-592.	1.3	1
149	Reward-Punishment Editing for Mixed Data. Lecture Notes in Computer Science, 2005, , 481-488.	1.3	O
150	A Fast Algorithm to Find All the Maximal Frequent Sequences in a Text. Lecture Notes in Computer Science, 2004, , 478-486.	1.3	14
151	Two Floating Search Strategies to Compute the Support Sets System for ALVOT. Lecture Notes in Computer Science, 2004, , 677-684.	1.3	1
152	Determination of Similarity Threshold in Clustering Problems for Large Data Sets. Lecture Notes in Computer Science, 2003, , 611-618.	1.3	3
153	Editing and Training for ALVOT, an Evolutionary Approach. Lecture Notes in Computer Science, 2003, , 452-456.	1.3	4
154	A Comparison between Two Fuzzy Clustering Algorithms for Mixed Features. Lecture Notes in Computer Science, 2003, , 472-479.	1.3	0
155	RGC: A new conceptual clustering algorithm for mixed incomplete data sets. Mathematical and Computer Modelling, 2002, 36, 1375-1385.	2.0	5
156	The logical combinatorial approach to pattern recognition, an overview through selected works. Pattern Recognition, 2001, 34, 741-751.	8.1	62
157	Fuzzy clustering of semantic spaces. Pattern Recognition, 2001, 34, 783-793.	8.1	8
158	LC: A Conceptual Clustering Algorithm. Lecture Notes in Computer Science, 2001, , 117-127.	1.3	4
159	A tool to discover the main themes in a Spanish or English document. Expert Systems With Applications, 2000, 19, 319-327.	7.6	7
160	Structuralization of universes. Fuzzy Sets and Systems, 2000, 112, 485-500.	2.7	30
161	Discovering Differences in Patients with Uveitis through Typical Testors by Class. Lecture Notes in Computer Science, 2000, , 524-529.	1.3	1
162	Extension to C-means Algorithm for the Use of Similarity Functions. Lecture Notes in Computer Science, 1999, , 354-359.	1.3	16

:	#	Article	IF	CITATIONS
	163	A new approach to differential diagnosis of diseases. International Journal of Bio-medical Computing, 1996, 40, 179-185.	0.5	23
;	164	Data Preprocessing by Sequential Pattern Mining for LZW. , 0, , .		0