Isabel Cristina Tessaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424578/publications.pdf

Version: 2024-02-01

76196 110170 4,778 131 40 64 citations h-index g-index papers 131 131 131 5621 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The influence of aeration rate on the sorption of emerging pharmaceuticals in activated sludge. Environmental Technology (United Kingdom), 2023, 44, 2549-2562.	1.2	О
2	Concentration of grape juice: Combined forward osmosis/evaporation versus conventional evaporation. Innovative Food Science and Emerging Technologies, 2022, 75, 102905.	2.7	11
3	Poly(ethylene terephthalate) phase inversion membranes: Thermodynamics and effects of a poor solvent on the membrane characteristics. Polymer Engineering and Science, 2022, 62, 1847-1858.	1.5	4
4	Making the reuse of agro-industrial wastes a reality for starch-based packaging sector: A storage case study of carrot cake and cherry tomatoes. International Journal of Biological Macromolecules, 2022, 206, 740-749.	3.6	4
5	Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polymer Bulletin, 2021, 78, 981-1000.	1.7	42
6	Impact of PLA Poly(Lactic Acid) and PBAT Poly(butylene adipate-co-terephthalate) Coating on the Properties of Composites with High Content of Rice Husk. Journal of Polymers and the Environment, 2021, 29, 1324-1331.	2.4	9
7	Preparation of alumina based tubular asymmetric membranes incorporated with coal fly ash by centrifugal casting. Ceramics International, 2021, 47, 4187-4196.	2.3	21
8	Gelatin/poly(vinyl alcohol) based hydrogel film – A potential biomaterial for wound dressing: Experimental design and optimization followed by rotatable central composite design. Journal of Biomaterials Applications, 2021, 36, 682-700.	1.2	9
9	Supported carbon membranes using poly(ether sulfone) precursor. Korean Journal of Chemical Engineering, 2021, 38, 565-575.	1.2	1
10	Influence of replacing oregano essential oil by ground oregano leaves on chitosan/alginate-based dressings properties. International Journal of Biological Macromolecules, 2021, 181, 51-59.	3.6	14
11	Estimation of the spatial discretization error in numerical simulations of bubbly flows. Chemical Engineering Science, 2021 , 236 , 116503 .	1.9	0
12	Thin polymer layer-covered porous alumina tubular membranes prepared via a dip-coating/phase-inversion process. Materials Chemistry and Physics, 2021, 265, 124511.	2.0	4
13	Cassava starch-processing residue utilization for packaging development. International Journal of Biological Macromolecules, 2021, 183, 2238-2247.	3.6	14
14	How are the properties of biocomposite foams influenced by the substitution of cassava starch for its residual sources?. Food Hydrocolloids, 2021, 118, 106790.	5.6	9
15	Alumina supports produced by dry-pressing and sintering at different temperatures for developing carbon molecular sieve membranes. Ceramics International, 2021, 47, 32226-32236.	2.3	1
16	Biodegradable Cassava Starch Based Foams Using Rice Husk Waste as Macro Filler. Waste and Biomass Valorization, 2020, 11, 4315-4325.	1.8	14
17	Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 2020, 147, 1343-1353.	3.6	39
18	Gelatin-based films containing clinoptilolite-Ag for application as wound dressing. Materials Science and Engineering C, 2020, 107, 110215.	3.8	40

#	Article	IF	CITATIONS
19	A new approach to phase-field model for the phase separation dynamics in polymer membrane formation by immersion precipitation method. Polymer, 2020, 186, 122054.	1.8	7
20	Effect of acetylated starch on the development of peanut skin-cassava starch foams. International Journal of Biological Macromolecules, 2020, 165, 1706-1716.	3.6	13
21	<scp><i>In natura</i></scp> ovine whey proteins concentration by ultrafiltration combining batch and diafiltration operating modes. Journal of Food Process Engineering, 2020, 43, e13554.	1.5	3
22	Beer dealcoholization by forward osmosis diafiltration. Innovative Food Science and Emerging Technologies, 2020, 63, 102371.	2.7	19
23	Reuse of Different Agroindustrial Wastes: Pinhão and Pecan Nutshells Incorporated into Biocomposites Using Thermocompression. Journal of Polymers and the Environment, 2020, 28, 1431-1440.	2.4	16
24	Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydrate Polymers, 2020, 247, 116676.	5.1	28
25	Influence of turmeric incorporation on physicochemical, antimicrobial and mechanical properties of the cornstarch and chitosan films. International Journal of Biological Macromolecules, 2020, 148, 342-350.	3.6	20
26	Demineralized whey–gelatin composite films: Effects of composition on film formation, mechanical, and physical properties. Journal of Applied Polymer Science, 2020, 137, 49282.	1.3	6
27	Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 2019, 225, 115234.	5.1	93
28	Constrained Mixture Design to Optimize Formulation and Performance of Foams Based on Cassava Starch and Peanut Skin. Journal of Polymers and the Environment, 2019, 27, 2224-2238.	2.4	17
29	Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. International Journal of Biological Macromolecules, 2019, 138, 693-703.	3.6	65
30	The role of turbulence models in the modeling of membrane bioreactors. Chemical Engineering and Processing: Process Intensification, 2019, 144, 107639.	1.8	4
31	Pervaporation in the separation of essential oil components: A review. Trends in Food Science and Technology, 2019, 93, 42-52.	7.8	69
32	SENSITIVITY ANALYSIS FOR MODEL COMPARISON AND SELECTION IN TISSUE ENGINEERING. Brazilian Journal of Chemical Engineering, 2019, 36, 383-391.	0.7	5
33	Development of a Cassava Starch-Based Foam Incorporated with Grape Stalks Using an Experimental Design. Journal of Polymers and the Environment, 2019, 27, 2853-2866.	2.4	16
34	Characterization of the bubbly flow in a hollow fiber membrane bioreactor. Chemical Engineering Research and Design, 2019, 150, 179-186.	2.7	1
35	Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 2019, 93, 317-324.	5.6	108
36	Phase separation behavior of poly(ethylene terephthalate)/(trifluoroacetic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50) 67 Td (ad	cid/dichlorome 10

3

Applied Polymer Science, 2019, 136, 47263.

36

#	Article	IF	CITATIONS
37	Influence of Blueberry and Jaboticaba Agroindustrial Residue Particle Size on Color Change of Corn Starch Based Films Submitted to Different pH Values Solutions. Journal of Renewable Materials, 2019, 7, 235-243.	1.1	12
38	Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. Journal of Biological Physics, 2018, 44, 245-271.	0.7	14
39	A sensitivity analysis for tissue development by varying model parameters and input variables. Canadian Journal of Chemical Engineering, 2018, 96, 2334-2341.	0.9	O
40	Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, 2018, 82, 209-218.	5.6	125
41	Transport of Components in the Separation of Ethanol from Aqueous Dilute Solutions by Forward Osmosis. Industrial & Damp; Engineering Chemistry Research, 2018, 57, 2967-2975.	1.8	17
42	Effect of thermal and high pressure processing on stability of betalain extracted from red beet stalks. Journal of Food Science and Technology, 2018, 55, 568-577.	1.4	13
43	Influence of Glutaraldehyde Crosslinking and Alkaline Post-treatment on the Properties of Chitosan-Based Films. Journal of Polymers and the Environment, 2018, 26, 2748-2757.	2.4	41
44	Potential of pinh \tilde{A} £o Coat as Constituents of Starch Based Films Using Modification Techniques. Journal of Polymers and the Environment, 2018, 26, 2686-2697.	2.4	7
45	Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties. International Journal of Biological Macromolecules, 2018, 115, 955-960.	3 . 6	38
46	Effect of Broken Rice Flour Addition on Cassava Starchâ€Based Foams. Starch/Staerke, 2018, 70, 1700191.	1.1	7
47	Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules, 2018, 106, 834-839.	3.6	110
48	Process System Engineering Methodologies Applied to Tissue Development and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1078, 445-463.	0.8	3
49	Wastewater treatment in a pilot-scale submerged membrane bioreactor: study of hydrodynamics under constant operating pressure. Brazilian Journal of Chemical Engineering, 2018, 35, 51-61.	0.7	1
50	Evaluation of membrane microfiltration fouling in landfill leachate treatment. Revista Materia, 2018, 23, .	0.1	6
51	Effect of chitosan addition on the properties of films prepared with corn and cassava starches. Journal of Food Science and Technology, 2018, 55, 2963-2973.	1.4	47
52	Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. Brazilian Journal of Medical and Biological Research, 2018, 51, e6754.	0.7	6
53	Impact of the starch source on the physicochemical properties and biodegradability of different starchâ€based films. Journal of Applied Polymer Science, 2018, 135, 46564.	1.3	61
54	Relevant biological processes for tissue development with stem cells and their mechanistic modeling: A review. Mathematical Biosciences, 2018, 301, 147-158.	0.9	6

#	Article	IF	Citations
55	Preparation and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property. European Polymer Journal, 2017, 92, 61-70.	2.6	63
56	Impact of osmotic agent on the transport of components using forward osmosis to separate ethanol from aqueous solutions. AICHE Journal, 2017, 63, 4499-4507.	1.8	10
57	Experimental and computational analysis of carbon molecular sieve membrane formation upon polyetherimide pyrolysis. Carbon, 2017, 119, 21-29.	5.4	33
58	Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. International Journal of Biological Macromolecules, 2017, 104, 11-18.	3.6	134
59	Obtaining and purification of a highly soluble hydrolyzed rice endosperm protein. Separation and Purification Technology, 2017, 183, 279-292.	3.9	2
60	Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 2017, 102, 115-121.	2.5	55
61	Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 2017, 109, 619-626.	2.5	136
62	Recent advances in the development of supported carbon membranes for gas separation. International Journal of Hydrogen Energy, 2017, 42, 24830-24845.	3.8	92
63	Electrochemical regeneration of phenol-saturated activated carbon – proposal of a reactor. Environmental Technology (United Kingdom), 2017, 38, 549-557.	1.2	11
64	Equilibrium studies, kinetics and thermodynamics of anion removal by adsorption. World Review of Science, Technology and Sustainable Development, 2016, 12, 193.	0.3	2
65	Effect of Ultrasound Treatment on Particle Size, Rheology, Microstructure, Colour and Water Holding Capacity of a Soy-Based Dessert. Acta Alimentaria, 2016, 45, 242-249.	0.3	1
66	Jaboticaba (Myrciaria jaboticaba) juice concentration by forward osmosis. Separation Science and Technology, 2016, 51, 1708-1715.	1.3	23
67	Whey fractionation through the membrane separation process. Separation Science and Technology, 2016, 51, 1862-1871.	1.3	11
68	Clarification of red beet stalks extract by microfiltration combined with ultrafiltration. Journal of Food Engineering, 2016, 185, 35-41.	2.7	23
69	Characterization of rice starch and protein obtained by a fast alkaline extraction method. Food Chemistry, 2016, 191, 36-44.	4.2	83
70	Concentration and Purification of Yacon (Smallanthus sonchifolius) Root Fructooligosaccharides Using Membrane Technology. Food Technology and Biotechnology, 2015, 53, 190-200.	0.9	7
71	Rheological modelling, microstructure and physical stability of custard-like soy-based desserts enriched with guava pulp. CYTA - Journal of Food, 2015, 13, 373-384.	0.9	10
72	Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innovative Food Science and Emerging Technologies, 2015, 29, 170-177.	2.7	128

#	Article	IF	Citations
73	Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics. Chemical Industry and Chemical Engineering Quarterly, 2015, 21, 23-33.	0.4	13
74	Successive cycles of sorption/regeneration for granular activated carbon in the removal of nitrate ions. Desalination and Water Treatment, 2015, 55, 1908-1914.	1.0	6
75	Interactions between soy protein from water-soluble soy extract and polysaccharides in solutions with polydextrose. Carbohydrate Polymers, 2015, 134, 119-127.	5.1	42
76	Membrane Characterization Based on PEG Rejection and CFD Analysis. Separation Science and Technology, 2015, 50, 1823-1834.	1.3	2
77	Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. Journal of Food Engineering, 2015, 153, 20-27.	2.7	92
78	Synthesis and characterization of biofilms using native and modified pinh \tilde{A} \hat{E} o starch. Food Hydrocolloids, 2015, 45, 203-210.	5.6	68
79	Caracterização fÃsica, quÃmica e sensorial de sobremesas à base de soja, elaboradas com mucilagem de chia. Ciencia Rural, 2014, 44, 374-379.	0.3	6
80	Evaluation of the Phenolic Content and Antioxidant Activity of Different Seed and Nut Cakes from the Edible Oil Industry. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1773-1782.	0.8	45
81	Desorption―and Decompositionâ€Based Techniques for the Regeneration of Activated Carbon. Chemical Engineering and Technology, 2014, 37, 1447-1459.	0.9	77
82	Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 2014, 123, 1-7.	2.7	89
83	Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes. Desalination, 2014, 341, 126-134.	4.0	10
84	Membrane Separation Processes for the Beer Industry: a Review and State of the Art. Food and Bioprocess Technology, 2014, 7, 921-936.	2.6	63
85	Modeling and simulation of Byssochlamys fulva growth on papaya pulp subjected to evaporative cooling. Chemical Engineering Science, 2014, 114, 134-143.	1.9	4
86	The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT - Food Science and Technology, 2014, 58, 497-501.	2.5	101
87	A Comparison of Different Electrodes Solutions on Demineralization of Permeate Whey. Separation Science and Technology, 2014, 49, 179-185.	1.3	7
88	Grape Marc Powder: Physicochemical and Microbiological Stability During Storage and Moisture Sorption Isotherm. Food and Bioprocess Technology, 2014, 7, 2500-2506.	2.6	8
89	Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating. Journal of Agricultural and Food Chemistry, 2014, 62, 5865-5870.	2.4	27
90	Jaboticaba Pomace Powder Obtained as a Co-product of Juice Extraction: A Comparative Study of Powder Obtained from Peel and Whole Fruit. Food Research International, 2014, 62, 786-792.	2.9	69

#	Article	IF	CITATIONS
91	Optimization of phenolics extraction from sesame seed cake. Separation and Purification Technology, 2014, 122, 506-514.	3.9	66
92	Study of CaCl2 as an agent that modifies the surface of activated carbon used in sorption/treatment cycles for nitrate removal. Brazilian Journal of Chemical Engineering, 2014, 31, 205-210.	0.7	10
93	Kinetic Modeling of Anthocyanin Extraction from Grape Marc. Food and Bioprocess Technology, 2013, 6, 3473-3480.	2.6	19
94	A new method for predicting sorption isotherms at different temperatures: Extension to the GAB model. Journal of Food Engineering, 2013, 118, 247-255.	2.7	35
95	Integrating a kinetic microbial model with a heat transfer model to predict Byssochlamys fulva growth in refrigerated papaya pulp. Journal of Food Engineering, 2013, 118, 279-288.	2.7	15
96	A new method for predicting sorption isotherms at different temperatures using the BET model. Journal of Food Engineering, 2013, 114, 139-145.	2.7	38
97	Evaluation of key parameters during construction and operation of an ohmic heating apparatus. Innovative Food Science and Emerging Technologies, 2013, 18, 145-154.	2.7	30
98	Degradation kinetics of anthocyanins in acerola pulp: Comparison between ohmic and conventional heat treatment. Food Chemistry, 2013, 136, 853-857.	4.2	97
99	Tracking bioactive compounds with colour changes in foods – A review. Dyes and Pigments, 2013, 98, 601-608.	2.0	134
100	Water adsorption isotherms of microcapsules with hydrolyzed pinhão (Araucaria angustifolia seeds) starch as wall material. Journal of Food Engineering, 2013, 114, 64-69.	2.7	36
101	Effects of ohmic and conventional heating on anthocyanin degradation during theÂprocessing of blueberry pulp. LWT - Food Science and Technology, 2013, 51, 79-85.	2.5	84
102	Study on Potassium Permanganate Chemical Treatment of Discarded Reverse Osmosis Membranes Aiming their Reuse. Separation Science and Technology, 2013, 48, 1537-1543.	1.3	24
103	Physicochemical characterization of saccharides powder obtained from yacon roots (Smallanthus) Tj ETQq1 1 0.7 1024-1033.	784314 rgf 0.5	BT /Overlock 8
104	ANTHOCYANIN AND ANTHOCYANIDIN CONTENT OF HIGHBUSH BLUEBERRIES CULTIVATED IN BRAZIL. Boletim Centro De Pesquisa De Processamento De Alimentos, 2013, 31, .	0.2	0
105	Effects of Ozone in Combination with Hydrothermal Treatment and Wax on Physical and Chemical Properties of Papayas. Ozone: Science and Engineering, 2012, 34, 57-63.	1.4	6
106	Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT - Food Science and Technology, 2012, 47, 91-95.	2.5	64
107	Study on the stability of \hat{l}^2 -carotene microencapsulated with pinh \tilde{A} £o (Araucaria angustifolia seeds) starch. Carbohydrate Polymers, 2012, 89, 1166-1173.	5.1	82
108	Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment. Separation and Purification Technology, 2012, 100, 1-8.	3.9	25

#	Article	IF	CITATIONS
109	Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 2012, 100, 82-87.	3.9	84
110	Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH. Brazilian Journal of Chemical Engineering, 2012, 29, 337-348.	0.7	66
111	Microencapsulation of βâ€carotene using native <i>pinhão</i> starch, modified <i>pinhão</i> gelatin by freezeâ€drying. International Journal of Food Science and Technology, 2012, 47, 186-194.	1.3	43
112	OSMOTIC DEHYDRATION OF BANANAS (<i>MUSA SAPIENTUM, SHUM.</i>) IN TERNARY AQUEOUS SOLUTIONS OF SUCROSE AND SODIUM CHLORIDE. Journal of Food Process Engineering, 2012, 35, 149-165.	1.5	8
113	Effects of ozonized water and heat treatment on the papaya fruit epidermis. Food and Bioproducts Processing, 2012, 90, 118-122.	1.8	17
114	Membrane concentration of liquid foods by forward osmosis: Process and quality view. Journal of Food Engineering, 2012, 111, 483-489.	2.7	160
115	Ultrafiltration of Wastewater from Isolated Soy Protein Production: Fouling Tendencies and Mechanisms. Separation Science and Technology, 2011, 46, 1077-1086.	1.3	9
116	Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT - Food Science and Technology, 2011, 44, 82-91.	2.5	85
117	An investigation of the fractionation of whey proteins by two microfiltration membranes with nominal pore size of $0.1\hat{a} \in \hat{f}^1/4$ m. International Journal of Dairy Technology, 2011, 64, 343-349.	1.3	6
118	Concentration and purification of whey proteins by ultrafiltration. Desalination, 2011, 278, 381-386.	4.0	211
119	Rheological behavior of blueberry (Vaccinium ashei) purees containing xanthan gum and fructose as ingredients. Food Hydrocolloids, 2011, 25, 299-306.	5.6	20
120	A theoretical and experimental study of the crossflow microfiltration process of silica particles in an aqueous suspension. Canadian Journal of Chemical Engineering, 2011, 89, 139-147.	0.9	3
121	Physical properties of acerola and blueberry pulps. Journal of Food Engineering, 2011, 106, 283-289.	2.7	35
122	Ultrafiltration of wastewater from isolated soy protein production: A comparison of three UF membranes. Journal of Cleaner Production, 2010, 18, 260-265.	4.6	58
123	Mass transfer kinetics during osmotic dehydration of bananas (<i>Musa sapientum</i> , <i>shum.</i>). International Journal of Food Science and Technology, 2010, 45, 2281-2289.	1.3	30
124	Degradation Kinetics of Anthocyanin in Blueberry Juice during Thermal Treatment. Journal of Food Science, 2010, 75, C173-6.	1.5	122
125	Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions. Journal of Membrane Science, 2006, 282, 375-382.	4.1	65
126	Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning. Desalination, 2005, 181, 275-282.	4.0	36

#	Article	IF	CITATIONS
127	Removal of hardness and COD from retanning treated effluent by membrane process. Desalination, 2002, 149, 145-149.	4.0	29
128	Separation characteristics of sodium fusidate in ultrafiltration. Separation and Purification Technology, 2000, 20, 209-218.	3.9	1
129	Simulation of an ultrafiltration process of bovine serum albumin in hollow-fiber membranes. Journal of Membrane Science, 1999, 160, 255-265.	4.1	9
130	A comparative study of techniques used for porous membrane characterization: pore characterization. Journal of Membrane Science, 1994, 87, 35-46.	4.1	102
131	Ultrafiltration and diafiltration modeling for improved whey protein purification. Separation Science and Technology, 0 , $1 \cdot 10$.	1.3	3