
Jimyeong Ha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424539/publications.pdf Version: 2024-02-01

ΙΜΥΓΟΝΟ ΗΛ

#	Article	IF	CITATIONS
1	Akkermansia muciniphila Prevents Fatty Liver Disease, Decreases Serum Triglycerides, and Maintains Gut Homeostasis. Applied and Environmental Microbiology, 2020, 86, .	3.1	109
2	Vitamin E (α-tocopherol) consumption influences gut microbiota composition. International Journal of Food Sciences and Nutrition, 2020, 71, 221-225.	2.8	58
3	Identification of Pork Adulteration in Processed Meat Products Using the Developed Mitochondrial DNA-Based Primers. Korean Journal for Food Science of Animal Resources, 2017, 37, 464-468.	1.5	46
4	Clinical relevance of infections with zoonotic and human oral species of Campylobacter. Journal of Microbiology, 2016, 54, 459-467.	2.8	44
5	Invited review: Microbe-mediated aflatoxin decontamination of dairy products and feeds. Journal of Dairy Science, 2017, 100, 871-880.	3.4	44
6	Microbiological safety of processed meat products formulated with low nitrite concentration $\hat{a} \in$ " A review. Asian-Australasian Journal of Animal Sciences, 2018, 31, 1073-1077.	2.4	29
7	Quantitative Microbial Risk Assessment for Campylobacter jejuni in Ground Meat Products in Korea. Food Science of Animal Resources, 2019, 39, 565-575.	4.1	20
8	Prevalence, Serotype Diversity, Genotype and Antibiotic Resistance of Listeria monocytogenes Isolated from Carcasses and Human in Korea. Korean Journal for Food Science of Animal Resources, 2018, 38, 851-865.	1.5	18
9	Evaluation on Antimicrobial Activity of Psoraleae semen Extract Controlling the Growth of Gram-Positive Bacteria. Korean Journal for Food Science of Animal Resources, 2017, 37, 502-510.	1.5	18
10	High Prevalence of Listeria monocytogenes in Smoked Duck: Antibiotic and Heat Resistance, Virulence, and Genetics of the Isolates. Food Science of Animal Resources, 2021, 41, 324-334.	4.1	17
11	Antibiotic Susceptibility, Genetic Diversity, and the Presence of Toxin Producing Genes in Campylobacter Isolates from Poultry. International Journal of Environmental Research and Public Health, 2017, 14, 1400.	2.6	14
12	Pathogenic Escherichia coli and Salmonella Can Survive in Kimchi during Fermentation. Journal of Food Protection, 2018, 81, 942-946.	1.7	14
13	Mathematical Models to Describe the Kinetic Behavior of Staphylococcus aureus in Jerky. Food Science of Animal Resources, 2019, 39, 371-378.	4.1	14
14	Quantitative Microbial Risk Assessment for <i>Clostridium perfringens</i> in Natural and Processed Cheeses. Asian-Australasian Journal of Animal Sciences, 2016, 29, 1188-1196.	2.4	13
15	Quantitative Microbial Risk Assessment for Campylobacter Foodborne Illness in Raw Beef Offal Consumption in South Korea. Journal of Food Protection, 2017, 80, 609-618.	1.7	11
16	Prevalence and Genetic Characteristics of Meatborne Listeria monocytogenes Isolates from Livestock Farms in Korea. Korean Journal for Food Science of Animal Resources, 2016, 36, 779-786.	1.5	11
17	Rapid Detection of in Fresh Foods Using a Combination of Enrichment and PCR Analysis. Korean Journal for Food Science of Animal Resources, 2018, 38, 829-834.	1.5	11
18	Microbial Risk Assessment of Non-Enterohemorrhagic Escherichia coli in Natural and Processed Cheeses in Korea. Korean Journal for Food Science of Animal Resources, 2017, 37, 579-592.	1.5	10

JIMYEONG HA

#	Article	IF	CITATIONS
19	Probabilistic models to describe the effect of NaNO2 in combination with NaCl on the growth inhibition of Lactobacillus in frankfurters. Meat Science, 2015, 110, 302-309.	5.5	9
20	Quantitative microbial risk assessment for Clostridium perfringens foodborne illness following consumption of kimchi in South Korea. Food Science and Biotechnology, 2020, 29, 1131-1139.	2.6	9
21	icaA Gene of Staphylococcus aureus Responds to NaCl, Leading to Increased Biofilm Formation. Journal of Food Protection, 2018, 81, 412-416.	1.7	8
22	Lactobacillus fermentum SMFM2017-NK4 Isolated from Kimchi Can Prevent Obesity by Inhibiting Fat Accumulation. Foods, 2021, 10, 772.	4.3	8
23	Probabilistic Models to Predict Listeria monocytogenes Growth at Low Concentrations of NaNO ₂ and NaCl in Frankfurters. Korean Journal for Food Science of Animal Resources, 2015, 35, 815-823.	1.5	8
24	Serotyping and Genotyping Characterization of Pathogenic Escherichia coli Strains in Kimchi and Determination of Their Kinetic Behavior in Cabbage Kimchi During Fermentation. Foodborne Pathogens and Disease, 2018, 15, 420-427.	1.8	7
25	The risk of aerotolerant Campylobacter jejuni strains in poultry meat distribution and storage. Microbial Pathogenesis, 2019, 134, 103537.	2.9	7
26	Influence of milk microbiota on Listeria monocytogenes survival during cheese ripening. Food Science and Nutrition, 2020, 8, 5071-5076.	3.4	7
27	Kinetic Behavior of Salmonella on Low NaNO2Sausages during Aerobic and Vacuum Storage. Korean Journal for Food Science of Animal Resources, 2016, 36, 262-266.	1.5	7
28	NaCl Influences Thermal Resistance and Cell Morphology of <i>Escherichia coli</i> Strains. Journal of Food Safety, 2016, 36, 62-68.	2.3	6
29	Kinetic Behavior of Campylobacter jejuni in Beef Tartare at Cold Temperatures and Transcriptomes Related to Its Survival. Journal of Food Protection, 2017, 80, 2127-2131.	1.7	6
30	Combined Enrichment and Quantitative Polymerase Chain Reaction to Improve Sensitivity and Reduce Time of Detection of <i>Listeria monocytogenes</i> in Mushrooms. Foodborne Pathogens and Disease, 2020, 17, 276-283.	1.8	6
31	Anti-Inflammatory Effect of a Peptide Derived from the Synbiotics, Fermented <i>Cudrania tricuspidata</i> with <i>Lactobacillus gasseri</i> , on Inflammatory Bowel Disease. Mediators of Inflammation, 2020, 2020, 1-8.	3.0	6
32	Quantitative Microbial Risk Assessment for Campylobacter spp. on Ham in Korea. Korean Journal for Food Science of Animal Resources, 2015, 35, 674-682.	1.5	6
33	Effects of low NaNO2 and NaCl concentrations on Listeria monocytogenes growth in emulsion-type sausage. Asian-Australasian Journal of Animal Sciences, 2017, 30, 432-438.	2.4	5
34	Asymptomatic Clostridium perfringens Inhabitation in Intestine Can Cause Inflammation, Apoptosis, and Disorders in Brain. Foodborne Pathogens and Disease, 2020, 17, 52-65.	1.8	5
35	Synthesis of nitrogen-doped carbon nanodots to destroy bacteria competing with Campylobacter jejuni in enrichment medium, and development of a monoclonal antibody to detect C. jejuni after enrichment. International Journal of Food Microbiology, 2021, 339, 109014.	4.7	5
36	Contamination of <i>Clostridium perfringens</i> in soy sauce, and quantitative microbial risk assessment for <i>C.Âperfringens</i> through soy sauce consumption. Food Science and Nutrition, 2021, 9, 2139-2146.	3.4	5

Jimyeong Ha

#	Article	IF	CITATIONS
37	Description of Kinetic Behavior of Pathogenic Escherichia coli in Cooked Pig Trotters under Dynamic Storage Conditions Using Mathematical Equations. Food Science of Animal Resources, 2020, 40, 938-945.	4.1	5
38	Model to Predict Growth/No Growth Interfaces of <i>Enterococcus</i> as A Function of NACl and NANO ₂ . Journal of Food Safety, 2016, 36, 537-547.	2.3	4
39	Role of Pseudomonas aeruginosa DesB in Adaptation to Osmotic Stress. Journal of Food Protection, 2019, 82, 1278-1282.	1.7	4
40	Prevalence of Salmonella in cucumbers, antibiotic and acid resistances and description of the kinetic behavior with dynamic model during storage. Journal of Food Safety, 2020, 40, e12760.	2.3	4
41	Effect of Gene actA on the Invasion Efficiency of Listeria monocytogenes, as Observed in Healthy and Senescent Intestinal Epithelial Cells. Journal of Microbiology and Biotechnology, 2018, 28, 59-64.	2.1	4
42	Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2under Aerobic or Evacuated Storage Conditions. Korean Journal for Food Science of Animal Resources, 2016, 36, 752-759.	1.5	4
43	Comparison of Upgraded Methods for Detecting Pathogenic in Foods Using Centrifugation or Filtration. Korean Journal for Food Science of Animal Resources, 2017, 37, 799-803.	1.5	4
44	Development of Hydrogels to Improve the Safety of Yukhoe (Korean Beef Tartare) by Reducing Psychrotrophic Listeria monocytogenes Cell Counts on Raw Beef Surface. Korean Journal for Food Science of Animal Resources, 2018, 38, 1189-1195.	1.5	3
45	Intestinal <i>Clostridioides difficile</i> Can Cause Liver Injury through the Occurrence of Inflammation and Damage to Hepatocytes. BioMed Research International, 2020, 2020, 1-11.	1.9	3
46	Antimicrobial activity of fermented Maillard reaction products, novel milk-derived material, made by whey protein and Lactobacillus rhamnosus and Lactobacillus gasseri on Clostridium perfringens. Animal Bioscience, 2021, 34, 1525-1531.	2.0	3
47	Polymer Hydrogels Formulated with Various Cross-Linkers for Food-Surface Application to Control Listeria monocytogenes. Han'gug Sigpum Wi'saeng Anjeonseong Haghoeji, 2017, 32, 443-446.	0.4	3
48	Quantitative microbial risk assessment of Campylobacter jejuni in jerky in Korea. Asian-Australasian Journal of Animal Sciences, 2019, 32, 274-281.	2.4	3
49	Pathogenic Characteristics and Antibiotic Resistance of Bacterial Isolates from Farmstead Cheeses. Korean Journal for Food Science of Animal Resources, 2018, 38, 203-208.	1.5	3
50	Antimicrobial Effect of Phytochemicals to <i>Listeria monocytogenes</i> Isolated from Slaughterhouses. Han'gug Sigpum Wi'saeng Anjeonseong Haghoeji, 2018, 33, 255-258.	0.4	2
51	The Correlation between NaCl Adaptation and Heat Sensitivity of Listeria monocytogenes, a Foodborne Pathogen through Fresh and Processed Meat. Korean Journal for Food Science of Animal Resources, 2016, 36, 469-475.	1.5	2
52	Development of Kinetic Models and Their Applications to Describe the Resistance of <i>Listeria monocytogenes</i> in Napa Cabbage Kimchi to Fermentation Conditions. Food Science and Technology Research, 2020, 26, 53-58.	0.6	2
53	Identification of Pathogenic Variations in Seafood Vibrio parahaemolyticus Isolates by Comparing Genome Sequences. Journal of Food Protection, 2021, 84, 1141-1149.	1.7	1
54	Development of a Selective Agar for Improving Campylobacter jejuni Detection in Food. Journal of AOAC INTERNATIONAL, 2021, 104, 1344-1349.	1.5	1

JIMYEONG HA

#	Article	IF	CITATIONS
55	Improvement of the detection efficiency of 3Mâ,,¢ molecular detection system for Campylobacter in poultry using nitrogen-doped carbon nanodots. Journal of Microbiological Methods, 2021, 184, 106211.	1.6	1
56	Risk assessment of vibriosis by Vibrio cholerae and Vibrio vulnificus in whip-arm octopus consumption in South Korea. Fisheries and Aquatic Sciences, 2021, 24, 207-218.	0.8	1
57	Dynamic model to describe kinetic behavior of <i>Listeria monocytogenes</i> in smoked salmon. Journal of Food Safety, 2021, 41, e12925.	2.3	1
58	The role of Pseudomonas aeruginosa DesB in pathogen-host interaction. International Microbiology, 2020, 23, 549-555.	2.4	0
59	Quantitative microbial risk assessment of Vibrio parahaemolyticus foodborne illness of sea squirt (Halocynthia roretzi) in South Korea. Fisheries and Aquatic Sciences, 2021, 24, 78-88.	0.8	Ο
60	Isolation of Bacillus cereus from Soft Soybean Curd and the Kinetic Behavior of B. cereus Isolates at Changing Temperatures. Journal of Food Protection, 2021, 84, 1555-1559.	1.7	0
61	Growth of Salmonella in napa cabbage kimchi during fermentation. Korean Journal of Food Preservation, 2021, 28, 532-539.	0.5	0
62	Application of Melting Temperature in Melting Curve of qPCR to Determine Listeria monocytogenes Presence in Golden Needle Mushroom. Journal of Food Quality, 2022, 2022, 1-5.	2.6	0