Brian G Forde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424511/publications.pdf Version: 2024-02-01

RDIAN C. FORDE

#	Article	IF	CITATIONS
1	Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging. Journal of Experimental Botany, 2020, 71, 4547-4561.	2.4	18
2	Plastic and genetic responses of a common sedge to warming have contrasting effects on carbon cycle processes. Ecology Letters, 2019, 22, 159-169.	3.0	25
3	Novel Micro-Phenotyping Approach to Chemical Genetic Screening for Increased Plant Tolerance to Abiotic Stress. Methods in Molecular Biology, 2018, 1795, 9-25.	0.4	4
4	How do plants sense their nitrogen status?. Journal of Experimental Botany, 2017, 68, 2531-2539.	2.4	92
5	The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology. Plant Methods, 2017, 13, 10.	1.9	18
6	AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods, 2017, 13, 12.	1.9	13
7	Stomatal and growth responses to hydraulic and chemical changes induced by progressive soil drying. Journal of Experimental Botany, 2017, 68, 5883-5894.	2.4	8
8	The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. Frontiers in Plant Science, 2017, 8, 1493.	1.7	98
9	QTL analysis of the developmental response to L-glutamate in Arabidopsis roots and its genotype-by-environment interactions. Journal of Experimental Botany, 2017, 68, 2919-2931.	2.4	4
10	Plant Methods reviewer acknowledgement 2014. Plant Methods, 2015, 11, .	1.9	0
11	MADS-box Transcription Factor OsMADS25 Regulates Root Development through Affection of Nitrate Accumulation in Rice. PLoS ONE, 2015, 10, e0135196.	1.1	81
12	Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence?. F1000prime Reports, 2014, 6, 37.	5.9	134
13	A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19, 5-9.	4.3	581
14	Glutamate signalling in roots. Journal of Experimental Botany, 2014, 65, 779-787.	2.4	114
15	Nitrogen signalling pathways shaping root system architecture: an update. Current Opinion in Plant Biology, 2014, 21, 30-36.	3.5	202
16	Glutamate signalling via a <scp>MEKK</scp> 1 kinaseâ€dependent pathway induces changes in <scp>A</scp> rabidopsis root architecture. Plant Journal, 2013, 75, 1-10.	2.8	65
17	Nitrogen Use Efficiency in Plants. Journal of Experimental Botany, 2012, 63, 4993-4993.	2.4	5
18	Quantitative Analysis of Lateral Root Development: Pitfalls and How to Avoid Them. Plant Cell, 2012, 24, 4-14.	3.1	98

#	Article	IF	CITATIONS
19	Overexpressing the ANR1 MADS-Box Gene in Transgenic Plants Provides New Insights into its Role in the Nitrate Regulation of Root Development. Plant and Cell Physiology, 2012, 53, 1003-1016.	1.5	103
20	A Comparison Between Northern Blotting and Quantitative Real-Time PCR as a Means of Detecting the Nutritional Regulation of Genes Expressed in Roots of Arabidopsis thaliana. Agricultural Sciences in China, 2011, 10, 335-342.	0.6	12
21	Shootward and rootward: peak terminology for plant polarity. Trends in Plant Science, 2010, 15, 593-594.	4.3	39
22	ls it good noise? The role of developmental instability in the shaping of a root system. Journal of Experimental Botany, 2009, 60, 3989-4002.	2.4	78
23	Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant, Cell and Environment, 2009, 32, 682-693.	2.8	130
24	Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Molecular Biology, 2008, 67, 89-105.	2.0	172
25	Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises <scp>l</scp> â€glutamateâ€induced changes in root architecture. Plant Journal, 2008, 54, 820-828.	2.8	200
26	L-Glutamate as a Novel Modifier of Root Growth and Branching. Plant Signaling and Behavior, 2007, 2, 284-286.	1.2	26
27	Glutamate in plants: metabolism, regulation, and signalling. Journal of Experimental Botany, 2007, 58, 2339-2358.	2.4	844
28	Plant Methods moves to fund open-access publishing. Plant Methods, 2006, 2, 6.	1.9	0
29	Expression and transport characterisation of the wheat low-affinity cation transporter (LCT1) in the methylotrophic yeast Pichia pastoris. Biochemical and Biophysical Research Communications, 2006, 344, 807-813.	1.0	15
30	Nitrate assimilation in the forage legume Lotus japonicus L. Planta, 2006, 223, 821-834.	1.6	12
31	Evidence that l -Glutamate Can Act as an Exogenous Signal to Modulate Root Growth and Branching in Arabidopsis thaliana. Plant and Cell Physiology, 2006, 47, 1045-1057.	1.5	228
32	The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19206-19211.	3.3	481
33	Nitrogen Regulation of Root Branching. Annals of Botany, 2006, 97, 875-881.	1.4	296
34	Nitrate and glutamate sensing by plant roots. Biochemical Society Transactions, 2005, 33, 283-286.	1.6	56
35	Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta, 2005, 222, 730-742.	1.6	148
36	Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynthesis Research, 2005, 83, 239-250.	1.6	83

#	Article	IF	CITATIONS
37	What is apical and what is basal in plant root development?. Trends in Plant Science, 2005, 10, 409-411.	4.3	30
38	Plant Methods: putting the spotlight on technological innovation in the plant sciences. Plant Methods, 2005, 1, 1.	1.9	31
39	Focus on Plant Nutrition. Plant Physiology, 2004, 136, 2437-2437.	2.3	7
40	Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal, 2003, 35, 675-692.	2.8	286
41	Molecular and Developmental Biology of Inorganic Nitrogen Nutrition. The Arabidopsis Book, 2002, 1, e0011.	0.5	218
42	LOCAL ANDLONG-RANGESIGNALINGPATHWAYSREGULATINGPLANTRESPONSES TONITRATE. Annual Review of Plant Biology, 2002, 53, 203-224.	8.6	462
43	The role of longâ€distance signalling in plant responses to nitrate and other nutrients. Journal of Experimental Botany, 2002, 53, 39-43.	2.4	135
44	The nutritional control of root development. , 2002, , 51-68.		44
45	The role of long-distance signalling in plant responses to nitrate and other nutrients. Journal of Experimental Botany, 2002, 53, 39-43.	2.4	99
46	The nutritional control of root development. Plant and Soil, 2001, 232, 51-68.	1.8	433
47	Nitrate Uptake and Its Regulation. , 2001, , 1-36.		33
48	The hormonal regulation of axillary bud growth in Arabidopsis. Plant Journal, 2000, 24, 159-169.	2.8	253
49	A High Affinity Fungal Nitrate Carrier with Two Transport Mechanisms. Journal of Biological Chemistry, 2000, 275, 39894-39899.	1.6	57
50	Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, 2000, 51, 51-59.	2.4	223
51	Nitrate transporters in plants: structure, function and regulation. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 219-235.	1.4	493
52	Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, 2000, 51, 51-59.	2.4	210
53	Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6529-6534.	3.3	614
54	Nitrate and Ammonium Nutrition of Plants: Physiological and Molecular Perspectives. Advances in Botanical Research, 1999, 30, 1-90.	0.5	270

#	Article	IF	CITATIONS
55	Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta, 1998, 206, 44-52.	1.6	86
56	response: Nitrate and root branching. Trends in Plant Science, 1998, 3, 204-205.	4.3	42
57	An Arabidopsis MADS Box Gene That Controls Nutrient-Induced Changes in Root Architecture. Science, 1998, 279, 407-409.	6.0	1,134
58	Cloning and characterisation of a novel P-glycoprotein homologue from barley. Gene, 1997, 199, 195-202.	1.0	36
59	Spatially distinct expression of two new cytochrome P450s in leaves of Nepeta racemosa: identification of a trichome-specific isoform. Plant Molecular Biology, 1997, 33, 875-885.	2.0	16
60	PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Molecular Biology, 1997, 34, 265-274.	2.0	129
61	Regulation of the expression of ferredoxin-glutamate synthase in barley. Planta, 1997, 203, 517-525.	1.6	46
62	Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene, 1996, 175, 223-231.	1.0	184
63	Glutamine synthetase polypeptides in the roots of 55 legume species in relation to their climatic origin and the partitioning of nitrate assimilation. Plant, Cell and Environment, 1996, 19, 848-858.	2.8	44
64	The Nir1 locus in barley is tightly linked to the nitrite reductase apoprotein gene Nii. Molecular Genetics and Genomics, 1995, 247, 579-582.	2.4	6
65	The use of mutants and transgenic plants to study amino acid metabolism. Plant, Cell and Environment, 1994, 17, 541-556.	2.8	79
66	AT-Rich Elements (ATREs) in the Promoter Regions of Nodulin and Other Higher Plant Genes: a Novel Class of Cis-Acting Regulatory Element?. Results and Problems in Cell Differentiation, 1994, 20, 87-103.	0.2	12
67	Plant cytochrome <i>P</i> -450 and agricultural biotechnology. Biochemical Society Transactions, 1993, 21, 1068-1073.	1.6	5
68	Functional expression of a plant plasma membrane transporter inXenopusoocytes. FEBS Letters, 1992, 302, 166-168.	1.3	49
69	Functional analysis of the promoter region of a nodule-enhanced glutamine synthetase gene from Phaseolus vulgaris L Plant Molecular Biology, 1992, 19, 837-846.	2.0	16
70	Molecular analysis of barley mutants deficient in chloroplast glutamine synthetase. Plant Molecular Biology, 1990, 14, 297-311.	2.0	39
71	The combined use of immunoassay and a DNA diagnostic technique to identify insecticide-resistant genotypes in the peach-potato aphid, Myzus persicae (Sulz.). Pesticide Biochemistry and Physiology, 1989, 34, 174-178.	1.6	16
72	Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Letters, 1989, 243, 323-327.	1.3	91

#	Article	IF	CITATIONS
73	Efficient transformation ofAgrobacteriumspp. by high voltage electroporation. Nucleic Acids Research, 1989, 17, 8385-8385.	6.5	288
74	Antigenic similarities between ferredoxin-dependent nitrite reductase and glutamate synthase fromChlamydomonas reinhardtii. BBA - Proteins and Proteomics, 1988, 957, 152-157.	2.1	20
75	5′-flanking sequence of a glutamine synthetase gene specifying the β subunit of the cytosolic enzyme fromPhaseolus vulgarisL Nucleic Acids Research, 1988, 16, 11367-11367.	6.5	6
76	Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of <i>Phaseolus vulgaris</i> . EMBO Journal, 1986, 5, 1429-1435.	3.5	137
77	Polymorphism at the Hor 1 locus of barley (Hordeum vulgare L.). Biochemical Genetics, 1985, 23, 391-404.	0.8	42
78	Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO Journal, 1985, 4, 9-15.	3.5	99
79	Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Research, 1985, 13, 7327-7339.	6.5	263
80	Molecular evolution of the seed storage proteins of barley, rye and wheat. Journal of Molecular Biology, 1985, 183, 499-502.	2.0	242
81	Molecular analysis of the effects of the lys 3a gene on the expression of Hor loci in developing endosperms of barley (Hordeum vulgare L.). Biochemical Genetics, 1984, 22, 231-255.	0.8	56
82	Nutritional control of storage-protein synthesis in developing grain of barley (Hordeum vulgare L.). Planta, 1983, 159, 366-372.	1.6	32
83	Sub-families of hordein mRNA encoded at the Hor 2 locus of barley. Molecular Genetics and Genomics, 1983, 191, 194-200.	2.4	44
84	Molecular analysis of a mutation conferring the high-lysine phenotype on the grain of barley (hordeum vulgare). Cell, 1983, 34, 161-167.	13.5	95
85	Identification of barley and wheat cDNA clones related to the high-Mrpolypeptides of wheat gluten. FEBS Letters, 1983, 162, 360-366.	1.3	38
86	Molecular cloning and analysis of cDNA sequences derived from polyA+RNA from barley endosperm: identification of B hordein related clones. Nucleic Acids Research, 1981, 9, 6689-6708.	6.5	103
87	Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 418-422.	3.3	188
88	In Vitro Study of Mitochondrial Protein Synthesis during Mitochondrial Biogenesis in Excised Plant Storage Tissue. Plant Physiology, 1979, 63, 67-73.	2.3	24
89	Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 3841-3845.	3.3	196