
Shunbo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/142431/publications.pdf Version: 2024-02-01

SHUNBOL

#	Article	IF	CITATIONS
1	A Facile and Flexible Humidity Sensor Based on Porous PDMS/AgNWs and GO for Environmental Humidity and Respiratory Detection. Macromolecular Materials and Engineering, 2022, 307, .	1.7	9
2	Bacterial identification and adhesive strength evaluation based on a mannose biosensor with dual-mode detection. Biosensors and Bioelectronics, 2022, 203, 114044.	5.3	6
3	Detection of prostate specific antigen in whole blood by microfluidic chip integrated with dielectrophoretic separation and electrochemical sensing. Biosensors and Bioelectronics, 2022, 204, 114057.	5.3	28
4	Detection of VEGF ₁₆₅ in Whole Blood by Differential Pulse Voltammetry Based on a Centrifugal Microfluidic Chip. ACS Sensors, 2022, 7, 1019-1026.	4.0	11
5	Ag–CeO ₂ Composite Aerogels as Photocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 7335-7345.	2.5	20
6	A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA. Analytica Chimica Acta, 2022, 1221, 340139.	2.6	14
7	In-situ and continuous monitoring of pyocyanin in the formation process of Pseudomonas aeruginosa biofilms by an electrochemical biosensor chip. Sensors and Actuators B: Chemical, 2021, 327, 128945.	4.0	15
8	Facile Formation of Hierarchical Textures for Flexible, Translucent, and Durable Superhydrophobic Film. Advanced Functional Materials, 2021, 31, 2008574.	7.8	68
9	A superhydrophobic and anti-corrosion strain sensor for robust underwater applications. Journal of Materials Chemistry A, 2021, 9, 15282-15293.	5.2	63
10	Magnetically Responsive Film Decorated with Microcilia for Robust and Controllable Manipulation of Droplets. ACS Applied Materials & amp; Interfaces, 2021, 13, 1754-1765.	4.0	38
11	A universal bonding method for preparation of microfluidic biosensor. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	7
12	Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. Nanotechnology, 2021, 32, 395502.	1.3	26
13	Gradient Architectureâ€Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range. Small, 2021, 17, e2103312.	5.2	73
14	Highly Stretchable Starch Hydrogel Wearable Patch for Electrooculographic Signal Detection and Human–Machine Interaction. Small Structures, 2021, 2, 2100105.	6.9	16
15	A review of electronic skin: soft electronics and sensors for human health. Journal of Materials Chemistry B, 2020, 8, 852-862.	2.9	125
16	Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes. Lab on A Chip, 2020, 20, 2954-2964.	3.1	3
17	Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation. Biomaterials Science, 2020, 8, 4852-4860.	2.6	56
18	A facile and novel design of multifunctional electronic skin based on polydimethylsiloxane with micropillars for signal monitoring. Journal of Materials Chemistry B, 2020, 8, 8315-8322.	2.9	17

Shunbo Li

#	Article	IF	CITATIONS
19	Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions. Nano Energy, 2020, 78, 105382.	8.2	49
20	<i>In situ</i> assembly of a wearable capacitive sensor with a spine-shaped dielectric for shear-pressure monitoring. Journal of Materials Chemistry C, 2020, 8, 15634-15645.	2.7	19
21	Screening the Ion Compositions on Crystal Morphology Transitions by a Microfluidic Chip with a Well-Defined Concentration Gradient. Crystal Growth and Design, 2020, 20, 6877-6887.	1.4	10
22	A highly efficient preconcentration route for rapid and sensitive detection of endotoxin based on an electrochemical biosensor. Analyst, The, 2020, 145, 4204-4211.	1.7	13
23	Investigating the Nucleation Kinetics of Calcium Carbonate Using a Zero-Water-Loss Microfluidic Chip. Crystal Growth and Design, 2020, 20, 2787-2795.	1.4	9
24	Printerâ€assisted array flexible surfaceâ€enhanced Raman spectroscopy chip preparation for rapid and Iabelâ€free detection of bacteria. Journal of Raman Spectroscopy, 2020, 51, 932-940.	1.2	15
25	Rapid identification of alpha-fetoprotein in serum by a microfluidic SERS chip integrated with Ag/Au Nanocomposites. Sensors and Actuators B: Chemical, 2020, 317, 128196.	4.0	33
26	Dynamic enrichment of plasmonic hot-spots and analytes on superhydrophobic and magnetically functionalized platform for surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2020, 319, 128297.	4.0	11
27	In Situ Detection of Endotoxin in Bacteriostatic Process by SERS Chip Integrated Array Microchambers within Bioscaffold Nanostructures and SERS Tags. ACS Applied Materials & Interfaces, 2020, 12, 28985-28992.	4.0	22
28	Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117113.	2.0	44
29	Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics. Talanta, 2019, 194, 903-909.	2.9	36
30	Nanofluidic behavior at the interface of sectionalized hydrophobic/hydrophilic patterns in nanochannel. Integrated Ferroelectrics, 2018, 188, 57-63.	0.3	0
31	Synchrotron FTIR mapping of mineralization in a microfluidic device. Lab on A Chip, 2017, 17, 1616-1624.	3.1	24
32	Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. Small, 2017, 13, 1702154.	5.2	29
33	The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angewandte Chemie - International Edition, 2017, 56, 11885-11890.	7.2	46
34	The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angewandte Chemie, 2017, 129, 12047-12052.	1.6	12
35	Rapid preparation of highly reliable PDMS double emulsion microfluidic devices. RSC Advances, 2016, 6, 25927-25933.	1.7	24
36	Capillary flow control in nanochannels via hybrid surface. RSC Advances, 2016, 6, 2774-2777.	1.7	13

Shunbo Li

#	Article	IF	CITATIONS
37	On-chip DNA preconcentration in different media conductivities by electrodeless dielectrophoresis. Biomicrofluidics, 2015, 9, 054115.	1.2	14
38	The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization. Advanced Materials, 2015, 27, 7395-7400.	11.1	40
39	Applications of Micro/Nanoparticles in Microfluidic Sensors: A Review. Sensors, 2014, 14, 6952-6964.	2.1	36
40	Simple and reusable picoinjector for liquid delivery via nanofluidics approach. Nanoscale Research Letters, 2014, 9, 147.	3.1	9
41	High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip. Biomicrofluidics, 2013, 7, 024106.	1.2	34
42	Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping. Microfluidics and Nanofluidics, 2013, 14, 527-539.	1.0	41
43	A novel method to construct 3D electrodes at the sidewall of microfluidic channel. Microfluidics and Nanofluidics, 2013, 14, 499-508.	1.0	47
44	Dielectrophoretic manipulation and separation of particles in an S-shaped microchannel with hurdles. , 2013, , .		0
45	A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer. Microfluidics and Nanofluidics, 2012, 12, 751-760.	1.0	47
46	Fano effect of metamaterial resonance in terahertz extraordinary transmission. Applied Physics Letters, 2011, 98, 011911.	1.5	38
47	Wax-bonding 3D microfluidic chips. Lab on A Chip, 2010, 10, 2622.	3.1	60