Charles Nicholas Peter Hewitt

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1424292/charles-nicholas-peter-hewitt-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

238 13,244 110 55 h-index g-index citations papers 6.08 14,656 271 7.2 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
238	Spatially and temporally resolved measurements of NO_{<i>x</i>} fluxes by airborne eddy covariance over Greater London. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15283-15298	6.8	1
237	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6315-6330	6.8	0
236	Avoiding high ozone pollution in Delhi, India. <i>Faraday Discussions</i> , 2021 , 226, 502-514	3.6	16
235	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-	436	11
234	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. <i>Faraday Discussions</i> , 2021 , 226, 382-408	3.6	3
233	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. <i>Environmental Science Atmospheres</i> , 2021 , 1, 104-	117	6
232	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2383-2406	6.8	9
231	Low-NO atmospheric oxidation pathways in a polluted megacity. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1613-1625	6.8	6
230	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO_{<i>x</i>} in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2125-2147	6.8	22
229	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2407-2426	6.8	13
228	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10133-10158	6.8	2
227	PM₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11655-11667	6.8	2
226	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13609-13630	6.8	2
225	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. <i>Atmospheric Environment: X</i> , 2021 , 11, 100115	2.8	4
224	Non-methane volatile organic compounds emitted from domestic fuels in Delhi: Emission factors and total city-wide emissions. <i>Atmospheric Environment: X, 2021</i> , 11, 100127	2.8	O
223	Elevated levels of OH observed in haze events during wintertime in central Beijing 2020,		2
222	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry 2020 ,		3

(2017-2020)

221	Elevated levels of OH observed in haze events during wintertime in central Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14847-14871	6.8	29
220	Surfacelltmosphere fluxes of volatile organic compounds in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 15101-15125	6.8	6
219	Measurements of traffic-dominated pollutant emissions in a Chinese megacity. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8737-8761	6.8	17
218	Using green infrastructure to improve urban air quality (GI4AQ). <i>Ambio</i> , 2020 , 49, 62-73	6.5	71
217	Reply to: Complexities between plants and the atmosphere. <i>Nature Geoscience</i> , 2019 , 12, 695-695	18.3	О
216	Introduction to the special issue In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) [[Atmospheric Chemistry and Physics, 2019, 19, 7519-75]	546 ⁸	73
215	Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14933-14947	6.8	17
214	Urban form strongly mediates the allometric scaling of airshed pollution concentrations. <i>Environmental Research Letters</i> , 2019 , 14, 124078	6.2	1
213	Hybrid life-cycle assessment for robust, best-practice carbon accounting. <i>Journal of Cleaner Production</i> , 2019 , 208, 35-43	10.3	11
212	Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy, 2018, 77, 50-58	5	52
211	Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. <i>Nature Geoscience</i> , 2018 , 11, 640-644	18.3	59
210	Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. <i>Elementa</i> , 2018 , 6,	3.6	79
209	Introduction to Special Issue In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) 2018 ,		3
208	The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground. <i>PLoS ONE</i> , 2018 , 13, e0208825	3.7	13
207	VOC emission rates over London and South East England obtained by airborne eddy covariance. <i>Faraday Discussions</i> , 2017 , 200, 599-620	3.6	17
206	Forests and Their Canopies: Achievements and Horizons in Canopy Science. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 438-451	10.9	93
205	Atmospheric chemistry and the biosphere: general discussion. <i>Faraday Discussions</i> , 2017 , 200, 195-228	3.6	1
204	Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability. <i>Biogeosciences</i> , 2017 , 14, 5571-5594	4.6	9

203	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514	3.6	1
202	Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7149-7170	6.8	19
201	Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10965-10984	6.8	24
200	Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories. <i>Faraday Discussions</i> , 2016 , 189, 455-72	3.6	33
199	Numerical modelling strategies for the urban atmosphere: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 635-60	3.6	
198	Atmospheric benzenoid emissions from plants rival those from fossil fuels. <i>Scientific Reports</i> , 2015 , 5, 12064	4.9	79
197	Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location. <i>Environmental Science & Environmental Science & Environ</i>	10.3	9
196	System to control indoor air quality in energy efficient buildings. <i>Urban Climate</i> , 2015 , 14, 475-485	6.8	5
195	Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, 2015, 29, 19-32	5.9	49
194	Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5083-5097	6.8	20
193	Seasonal and diurnal trends in concentrations and fluxes of volatile organic compounds in central London. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7777-7796	6.8	28
192	Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8077-8100	6.8	8
191	Resource acquisition, distribution and end-use efficiencies and the growth of industrial society. <i>Earth System Dynamics</i> , 2015 , 6, 689-702	4.8	16
190	Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. <i>New Phytologist</i> , 2014 , 201, 205-216	9.8	44
189	Concentrations of selected volatile organic compounds at kerbside and background sites in central London. <i>Atmospheric Environment</i> , 2014 , 95, 456-467	5.3	21
188	Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1011-1024	6.8	28
187	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species. Atmospheric Chemistry and Physics, 2014, 14, 12781-12801	6.8	19
186	Spatially-varying surface roughness and ground-level air quality in an operational dispersion model. <i>Environmental Pollution</i> , 2014 , 185, 44-51	9.3	29

(2011-2013)

185	Effects of the spatial resolution of climate data on estimates of biogenic isoprene emissions. <i>Atmospheric Environment</i> , 2013 , 70, 1-6	5.3	21
184	Investigating the impacts of anthropogenic and biogenic VOC emissions and elevated temperatures during the 2003 ozone episode in the UK. <i>Atmospheric Environment</i> , 2013 , 74, 393-401	5.3	14
183	Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. <i>Energy Policy</i> , 2013 , 63, 1065-1074	7.2	109
182	Impacts of biofuel cultivation on mortality and crop yields. <i>Nature Climate Change</i> , 2013 , 3, 492-496	21.4	63
181	Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10243-10269	6.8	64
180	Scaling Emissions from Agroforestry Plantations and Urban Habitats. <i>Tree Physiology</i> , 2013 , 415-450		5
179	The relative greenhouse gas impacts of realistic dietary choices. Energy Policy, 2012, 43, 184-190	7.2	220
178	Benchmarking sustainability in cities: The role of indicators and future scenarios. <i>Global Environmental Change</i> , 2012 , 22, 245-254	10.1	87
177	Scenario Archetypes: Converging Rather than Diverging Themes. Sustainability, 2012, 4, 740-772	3.6	12 0
176	Effectiveness of green infrastructure for improvement of air quality in urban street canyons. <i>Environmental Science & Environmental &</i>	10.3	355
175	ClimateBociety feedbacks and the avoidance of dangerous climate change. <i>Nature Climate Change</i> , 2012 , 2, 668-671	21.4	38
174	Reply to 'Circadian control of global isoprene emissions'. <i>Nature Geoscience</i> , 2012 , 5, 435-436	18.3	2
173	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. <i>Geoscientific Model Development</i> , 2012 , 5, 193-221	6.3	20
172	A futures-based analysis for urban air quality remediation. <i>Proceedings of the Institution of Civil Engineers: Engineering Sustainability</i> , 2012 , 165, 21-36	0.9	9
171	Plant pest and disease diagnosis using electronic nose and support vector machine approach. <i>Journal of Plant Diseases and Protection</i> , 2012 , 119, 200-207	1.5	18
170	Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 919-939	6.8	50
169	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 3065-3114	6.8	102
168	Effects of Climate-induced Changes in Isoprene Emissions after the eruption of Mount Pinatubo. <i>Procedia Environmental Sciences</i> , 2011 , 6, 199-205		

167	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1039-1050	6.8	136
166	Simulated effects of changes in direct and diffuse radiation on canopy scale isoprene emissions from vegetation following volcanic eruptions. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11723-1173	1 ^{6.8}	15
165	The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4121-4134	6.8	33
164	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8995-9017	6.8	73
163	Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8037-8052	6.8	143
162	Isoprene synthesis in plants: lessons from a transgenic tobacco model. <i>Plant, Cell and Environment</i> , 2011 , 34, 1043-1053	8.4	33
161	Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. <i>Global Change Biology</i> , 2011 , 17, 1595-1610	11.4	66
160	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 3210-24	5.8	25
159	Quantification of VOC emission rates from the biosphere. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 937-944	14.6	12
158	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 3177-95	5.8	32
157	Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 3196-209	5.8	55
156	Ground-level ozone influenced by circadian control of isoprene emissions. <i>Nature Geoscience</i> , 2011 , 4, 671-674	18.3	49
155	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2 2011		1
154	Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2 concentration, climate, and land use. <i>Global Biogeochemical Cycles</i> , 2010 , 24, n/a-n/a	5.9	70
153	Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8391-8412	6.8	102
152	NO_x and O₃ above a tropical rainforest: an analysis with a global and box model. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10607-10620	6.8	26
151	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 169-199	6.8	120
150	Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 279-298	6.8	118

149	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-4358	3 6.8	52
148	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169¶99, 2010. Atmospheric Chemistry and Physics	6.8	5
147	Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7117-7125	6.8	32
146	Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1193-1201	6.8	48
145	Fluxes and concentrations of volatile organic compounds above central London, UK. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 627-645	6.8	80
144	Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions. <i>Journal of Atmospheric Chemistry</i> , 2010 , 65, 89-110	3.2	6
143	Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.). <i>Plant Molecular Biology</i> , 2010 , 73, 547-58	4.6	38
142	Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence. <i>Photosynthesis Research</i> , 2010 , 104, 49-59	3.7	25
141	Development and application of a Lagrangian model to determine the origins of ozone episodes in the UK. <i>Atmospheric Environment</i> , 2010 , 44, 631-641	5.3	11
140	Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18447-51	11.5	140
139	Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO(2) concentrations. <i>Planta</i> , 2009 , 229, 837-46	4.7	28
138	Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters. <i>Plant, Cell and Environment</i> , 2009 , 32, 31-45	8.4	38
137	Isoprene synthesis protects transgenic tobacco plants from oxidative stress. <i>Plant, Cell and Environment</i> , 2009 , 32, 520-31	8.4	180
136	Biogenic volatile organic compounds in the Earth system. New Phytologist, 2009, 183, 27-51	9.8	347
135	Uptake of aldehydes and ketones at typical indoor concentrations by houseplants. <i>Environmental Science & Environmental Scienc</i>	10.3	42
134	Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK). <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1971-1987	6.8	75
133	Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. <i>Biogeosciences</i> , 2009 , 6, 1655-1670	4.6	70
132	Isoprene emissions influence herbivore feeding decisions. <i>Plant, Cell and Environment</i> , 2008 , 31, 1410-5	8.4	101

131	Discrimination of plant volatile signatures by an electronic nose: aA potential technology for plant pest and disease monitoring. <i>Environmental Science & Environmental Scien</i>	10.3	103
130	The role of isoprene in insect herbivory. <i>Plant Signaling and Behavior</i> , 2008 , 3, 1141-2	2.5	11
129	The effect of trade between China and the UK on national and global carbon dioxide emissions. Energy Policy, 2008 , 36, 1907-1914	7.2	167
128	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and Bioenergy</i> , 2008 , 32, 838-856	5.3	6
127	Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. <i>Physiologia Plantarum</i> , 2007 , 130, 58-66	4.6	64
126	A proton transfer reaction mass spectrometry based system for determining plant uptake of volatile organic compounds. <i>Atmospheric Environment</i> , 2007 , 41, 1736-1746	5.3	31
125	Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. <i>Atmospheric Environment</i> , 2007 , 41, 8455-8467	5.3	265
124	Critical issues in trace gas biogeochemistry and global change. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 1629-42	3	20
123	Application of multiple wind-roses to improve the modelling of ground-level ozone in the UK. <i>Atmospheric Environment</i> , 2006 , 40, 7480-7493	5.3	4
122	Urban land classification and its uncertainties using principal component and cluster analyses: A case study for the UK West Midlands. <i>Landscape and Urban Planning</i> , 2006 , 78, 311-321	7.7	48
121	Circadian control of isoprene emissions from oil palm (Elaeis guineensis). <i>Plant Journal</i> , 2006 , 47, 960-8	6.9	59
120	Development and application of an urban tree air quality score for photochemical pollution episodes using the Birmingham, United Kingdom, area as a case study. <i>Environmental Science & Technology</i> , 2005 , 39, 6730-8	10.3	75
119	The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. <i>Global Change Biology</i> , 2005 , 11, 60-69	11.4	104
118	Online analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis). <i>Tree Physiology</i> , 2004 , 24, 721-8	4.2	50
117	Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring[]Plant, Cell and Environment, 2004, 27, 393-401	8.4	76
116	Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur. <i>Global Change Biology</i> , 2004 , 10, 1835-1843	11.4	41
115	Effect of water vapour pressure on monoterpene measurements using proton transfer reaction-mass spectrometry (PTR-MS). <i>International Journal of Mass Spectrometry</i> , 2004 , 239, 161-169	1.9	80
114	Global Organic Emissions from Vegetation. <i>Advances in Global Change Research</i> , 2004 , 115-170	1.2	49

113	BIOGENIC VOLATILE ORGANIC COMPOUND (VOC) EMISSION ESTIMATES FROM AN URBAN TREE CANOPY 2003 , 13, 927-938		39
112	Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). <i>International Journal of Mass Spectrometry</i> , 2003 , 223-224, 561-578	1.9	155
111	The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. <i>Journal of Environmental Monitoring</i> , 2003 , 5, 1-7		145
110	Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a		46
109	A highly spatially and temporally resolved inventory for biogenic isoprene and monoterpene emissions: Model description and application to Great Britain. <i>Journal of Geophysical Research</i> , 2003 , 108,		49
108	Emission rates of C8I115 VOCs from seaweed and sand in the inter-tidal zone at Mace Head, Ireland. <i>Atmospheric Environment</i> , 2002 , 36, 5311-5321	5.3	10
107	Influence of Transport over a Mountain Ridge on the Chemical Composition of Marine Aerosols during the ACE-2 Hillcloud Experiment. <i>Journal of Atmospheric Chemistry</i> , 2002 , 41, 83-107	3.2	5
106	Performance characteristics and applications of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds in ambient air. <i>Environmental Science & Environmental Science &</i>	10.3	90
105	A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 1-1		142
104	Temporal patterns, sources, and sinks of C8-C16 hydrocarbons in the atmosphere of Mace Head, Ireland. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 4-1		6
103	Determination of biogenic volatile organic compounds (C8ሺ16) in the coastal atmosphere at Mace Head, Ireland. <i>Analytica Chimica Acta</i> , 2001 , 428, 61-72	6.6	27
102	The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric Environment</i> , 2001 , 35, 1155-1170	5.3	101
101	ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2000 , 52, 750-778	3.3	41
100	Observations of new particle production in the atmosphere of a moderately polluted site in eastern England. <i>Journal of Geophysical Research</i> , 2000 , 105, 17819-17832		31
99	Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model. <i>Journal of Geophysical Research</i> , 2000 , 105, 26379-26392		10
98	Development of a calibration system to evaluate VOC losses in a branch enclosure. <i>Journal of Environmental Monitoring</i> , 2000 , 2, 133-8		2
97	Extrapolating branch enclosure measurements to estimates of regional scale biogenic VOC fluxes in the northwestern Mediterranean basin. <i>Journal of Geophysical Research</i> , 2000 , 105, 11573-11583		26
96	Atmosphere Hydrogen Peroxide and Organic Hydroperoxides: A Review. <i>Critical Reviews in Environmental Science and Technology</i> , 1999 , 29, 175-228	11.1	78

95	Inventorying emissions from nature in Europe. <i>Journal of Geophysical Research</i> , 1999 , 104, 8113-8152		375
94	An analysis of rapid increases in condensation nuclei concentrations at a remote coastal site in western Ireland. <i>Journal of Geophysical Research</i> , 1999 , 104, 13771-13780		37
93	The Sampling and Analysis of Volatile Organic Compounds in the Atmosphere 1999 , 119-157		4
92	Field studies of isoprene emissions from vegetation in the northwest Mediterranean region. Journal of Geophysical Research, 1998 , 103, 25499-25511		32
91	The impact of ozone, isoprene and propene on antioxidant levels in two leaf classes of velvet bean (Mucuna pruriens L.). <i>Journal of Experimental Botany</i> , 1998 , 49, 115-123	7	6
90	The impact of ozone, isoprene and propene on antioxidant levels in two leaf classes of velvet bean (Mucuna pruriens L.). <i>Journal of Experimental Botany</i> , 1998 , 49, 115-123	7	6
89	Field measurements of dimethyl sulphide and its oxidation products in the atmosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 183-189	;.8	9
88	Isoprene and monoterpene emissions from a eucalyptus plantation in Portugal. <i>Journal of Geophysical Research</i> , 1997 , 102, 15875-15887		53
87	Biogenic emissions of volatile organic compounds from gorse (Ulex europaeus): Diurnal emission fluxes at Kelling Heath, England. <i>Journal of Geophysical Research</i> , 1997 , 102, 18903-18915		21
86	Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. <i>Journal of Geophysical Research</i> , 1997 , 102, 12839-12854		94
85	Emissions of VOCs from Stressed and Unstressed Vegetation 1997 , 366-371		7
84	Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay. <i>Journal of Geophysical Research</i> , 1996 , 101, 22855-22867		57
83	Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom. <i>Journal of Geophysical Research</i> , 1996 , 101, 22799-22806		32
82	Measurement of carbon dioxide and hydrocarbon fluxes from a Sitka Spruce forest using micrometeorological techniques. <i>Journal of Geophysical Research</i> , 1996 , 101, 22807-22815		25
81	Gas chromatographic determination of volatile alkenes with on-column bromination and electron-capture detection. <i>Journal of Chromatography A</i> , 1995 , 690, 187-195	l .5	7
80	Detection methods for the analysis of biogenic non-methane hydrocarbons in air. <i>Journal of Chromatography A</i> , 1995 , 710, 39-50	1. 5	13
79	Exposure to isoprene promotes flowering in plants. <i>Journal of Experimental Botany</i> , 1995 , 46, 1629-1631 ₇	7	39
78	PAHs in Air Adjacent to Two Inland Water Bodies. <i>Environmental Science & Environmental Science & Envi</i>	10.3	35

77	A global model of natural volatile organic compound emissions. <i>Journal of Geophysical Research</i> , 1995 , 100, 8873		3022
76	Effects of reactive hydrocarbons and hydrogen peroxide on antioxidant activity in cherry leaves. <i>Environmental Pollution</i> , 1995 , 88, 19-26	9.3	6
75	Biogenic emissions in Europe: 1. Estimates and uncertainties. <i>Journal of Geophysical Research</i> , 1995 , 100, 22875		273
74	Study of the responses of a gas chromatographyfeduction gas detector system to gaseous hydrocarbons under different conditions. <i>Analytica Chimica Acta</i> , 1995 , 300, 193-200	6.6	4
73	The effects of reactive hydrocarbons on plants. <i>Proceedings of the Royal Society of Edinburgh Section B Biological Sciences</i> , 1994 , 102, 307-311		
72	Build-up of artifacts on adsorbents during storage and its effect on passive sampling and gas chromatography-flame ionization detection of low concentrations of volatile organic compounds in air. <i>Journal of Chromatography A</i> , 1994 , 688, 368-374	4.5	41
71	Determination of reactive hydrocarbons by capillary gas chromatography with the reduction gas detector. <i>Journal of Chromatography A</i> , 1994 , 679, 115-121	4.5	5
70	Kinetics of dissolution of lead and zinc from rural atmospheric aerosols in freshwater and synthetic solutions. <i>Water Research</i> , 1994 , 28, 1703-1709	12.5	7
69	Elucidation of the tropospheric reactions of biogenic sulfur species from a field measurement campaign in NW Scotland. <i>Chemosphere</i> , 1994 , 28, 543-557	8.4	9
68	Artefacts in sorption experiments with trace metals. Science of the Total Environment, 1994, 152, 227-2.	3 & 0.2	27
67	A model of environmental behaviour of contaminated dust and its application to determining dust fluxes and residence times. <i>Atmospheric Environment</i> , 1994 , 28, 679-687	5.3	13
66	Study of the Degradation by Ozone of Adsorbents and of Hydrocarbons Adsorbed during the Passive Sampling of Air. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	44
65	An exposure system for the calibration of passive samplers to volatile organic compounds at low (ppbv) concentrations. <i>Journal of the Air and Waste Management Association</i> , 1994 , 44, 1299-302		1
64	Evaluation of tenax-GR adsorbent for the passive sampling of volatile organic compounds at low concentrations. <i>Atmospheric Environment Part A General Topics</i> , 1993 , 27, 1865-1872		31
63	The solubility and partitioning of atmospherically derived trace metals in artificial and natural waters: A review. <i>Atmospheric Environment Part A General Topics</i> , 1993 , 27, 1567-1578		21
62	Controlled environment fumigation chambers for the study of reactive air pollutant effects on plants. <i>Atmospheric Environment Part A General Topics</i> , 1993 , 27, 679-683		12
61	The trace metal dissolution kinetics of three rural atmospheric aerosols in a range of natural fresh water types. <i>Water Research</i> , 1993 , 27, 243-254	12.5	12
60	The design and application of a novel automated sampler for wet and dry deposition to water surfaces. <i>Science of the Total Environment</i> , 1993 , 135, 55-66	10.2	15

59	Passive sampling and gas chromatographic determination of low concentrations of reactive hydrocarbons in ambient air with reduction gas detector. <i>Journal of Chromatography A</i> , 1993 , 648, 191-	-1 9 7̄	18
58	Modelling and measurement of the dispersion of radioactive emissions from a nuclear fuel fabrication plant in the U.K <i>Atmospheric Environment Part A General Topics</i> , 1992 , 26, 3079-3087		4
57	A qualitative assessment of the emission of non-methane hydrocarbon compounds from the biosphere to the atmosphere in the U.K.: Present knowledge and uncertainties. <i>Atmospheric Environment Part A General Topics</i> , 1992 , 26, 3069-3077		74
56	Removal rates of selected pollutants in the runoff waters from a major rural highway. <i>Water Research</i> , 1992 , 26, 311-319	12.5	70
55	Natural sulphur species from the North Atlantic and their contribution to the United Kingdom sulphur budget. <i>Journal of Geophysical Research</i> , 1992 , 97, 2475		34
54	Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. <i>Global Biogeochemical Cycles</i> , 1992 , 6, 389-430	5.9	656
53	Behavior of urban dust contaminated by Chernobyl fallout: environmental half-lives and transfer coefficients. <i>Environmental Science & Environmental & Environ</i>	10.3	22
52	Understanding ozone plant chemistry. Environmental Science & Eamp; Technology, 1992, 26, 1890-1891	10.3	21
51	Trapping efficiencies of capillary cold traps for C2-C10 hydrocarbons. <i>Journal of Chromatography A</i> , 1992 , 627, 219-226	4.5	17
50	Ozone-hydrocarbon interactions in plants. <i>Phytochemistry</i> , 1992 , 31, 4045-4050	4	34
50	Ozone-hydrocarbon interactions in plants. <i>Phytochemistry</i> , 1992 , 31, 4045-4050 Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194	3.2	34 177
	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field		
49	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194 The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast		177
49	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194 The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 351-359 Application of passive samplers to the monitoring of low concentration organic vapours in indoor	3.2	177 29
49 48 47	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194 The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 351-359 Application of passive samplers to the monitoring of low concentration organic vapours in indoor and ambient air: A review. <i>Environmental Technology (United Kingdom)</i> , 1991 , 12, 1055-1062 A method for the sampling and removal of ionic alkyllead compounds from aqueous solution using	2.6	177 29 24
49 48 47 46	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194 The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 351-359 Application of passive samplers to the monitoring of low concentration organic vapours in indoor and ambient air: A review. <i>Environmental Technology (United Kingdom)</i> , 1991 , 12, 1055-1062 A method for the sampling and removal of ionic alkyllead compounds from aqueous solution using ion exchange media. <i>Water Research</i> , 1991 , 25, 91-94 The deposition of selected pollutants adjacent to a major rural highway. <i>Atmospheric Environment</i>	2.6	177 29 24 15 20
49 48 47 46 45	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194 The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 351-359 Application of passive samplers to the monitoring of low concentration organic vapours in indoor and ambient air: A review. <i>Environmental Technology (United Kingdom)</i> , 1991 , 12, 1055-1062 A method for the sampling and removal of ionic alkyllead compounds from aqueous solution using ion exchange media. <i>Water Research</i> , 1991 , 25, 91-94 The deposition of selected pollutants adjacent to a major rural highway. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 979-983 Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters.	2.6 12.5	177 29 24 15 20

41	The environmental half-lives and mean residence times of contaminants in dust for an urban environment: Barrow-in-Furness. <i>Science of the Total Environment</i> , 1990 , 93, 403-10	10.2	18
40	Soil and street dust heavy metal concentrations in and around Cuenca, Ecuador. <i>Environmental Pollution</i> , 1990 , 63, 129-36	9.3	39
39	Isoprene emissions from the grass Arundo donax L. are not linked to photorespiration. <i>Plant Science</i> , 1990 , 66, 139-144	5.3	54
38	Sampling of gaseous alkyllead compounds using cryotrapping: Validation and field results. <i>Science of the Total Environment</i> , 1989 , 84, 211-221	10.2	7
37	Organic lead compounds in vehicle exhaust. Applied Organometallic Chemistry, 1988, 2, 95-100	3.1	17
36	Atmospheric concentrations and chemistry of alkyllead compounds and environmental alkylation of lead. <i>Environmental Science & Environmental Environme</i>	10.3	30
35	The determination of individual gaseous ionic alkyllead species in the atmosphere. <i>Analytica Chimica Acta</i> , 1986 , 188, 229-238	6.6	19
34	Formation and decomposition of trialkyllead compounds in the atmosphere. <i>Environmental Science & Environmental & Environmenta</i>	10.3	21
33	A sensitive, specific method for the determination of tetraalkyllead compounds in air by gas chromatography/atomic absorption spectrometry. <i>Analytica Chimica Acta</i> , 1985 , 167, 277-287	6.6	29
32	Environmental analysis using gas chromatography latomic absorption spectrometry. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 1985 , 4, 8-11	14.6	6
31	Development of sensitive GC-AAS instrumentation for analysis of organometallic species in the environment. <i>International Journal of Environmental Analytical Chemistry</i> , 1985 , 21, 89-104	1.8	7
30	Measurements of alkyllead compounds in the gas and aerosol phase in urban and rural atmospheres. <i>Science of the Total Environment</i> , 1985 , 44, 235-44	10.2	22
29	Comment on the atmospheric distribution of lead over a number of marine regions. <i>Marine Chemistry</i> , 1984 , 15, 189-190	3.7	8
28	Seasonal analysis of submicron aerosol in Old Delhi using high resolution aerosol mass spectrometry: Chemical characterisation, source apportionment and new marker identification		3
27	Rainforest-like Atmospheric Chemistry in a Polluted Megacity		4
26	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _x in Beijing		3
25	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India		4
24	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, Ind	ia	3

23	PM ₁ composition and source apportionment at two sites in Delhi, India across multiple seasons	2
22	Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest	6
21	Large estragole fluxes from oil palms in Borneo	2
20	The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest	5
19	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest	3
18	Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo	1
17	Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation	1
16	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia	2
15	Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality	1
14	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species	1
13	Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK	1
12	Isoprene chemistry in pristine and polluted Amazon environments: Eulerian and Lagrangian model frameworks and the strong bearing they have on our understanding of surface ozone and predictions of rainforest exposure to this priority pollutant	2
11	Seasonal trends in concentrations and fluxes of volatile organic compounds above central London	1
10	Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK)	3
9	Fluxes and concentrations of volatile organic compounds above central London, UK	3
8	Simulating atmospheric composition over a South-East Asian tropical rainforest: Performance of a chemistry box model	1
7	Can a global model chemical mechanism reproduce NO, NO ₂ , and O ₃ measurements above a tropical rainforest?	7
6	Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in Western Italy	4

LIST OF PUBLICATIONS

5	emissions [historical trends and near-term forecasts	4
4	Methane: importance, sources and sinks.143-151	11
3	Nitrous oxide: importance, sources and sinks.201-206	7
2	Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy	1
1	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions	1