Charles Nicholas Peter Hewitt

List of Publications by Citations

Source:

https://exaly.com/author-pdf/1424292/charles-nicholas-peter-hewitt-publications-by-citations.pdf **Version:** 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

238 13,244 55 110 h-index g-index citations papers 6.08 14,656 271 7.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
238	A global model of natural volatile organic compound emissions. <i>Journal of Geophysical Research</i> , 1995 , 100, 8873		3022
237	Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. <i>Global Biogeochemical Cycles</i> , 1992 , 6, 389-430	5.9	656
236	Inventorying emissions from nature in Europe. <i>Journal of Geophysical Research</i> , 1999 , 104, 8113-8152		375
235	Effectiveness of green infrastructure for improvement of air quality in urban street canyons. <i>Environmental Science & Environmental &</i>	10.3	355
234	Biogenic volatile organic compounds in the Earth system. <i>New Phytologist</i> , 2009 , 183, 27-51	9.8	347
233	Biogenic emissions in Europe: 1. Estimates and uncertainties. <i>Journal of Geophysical Research</i> , 1995 , 100, 22875		273
232	Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. <i>Atmospheric Environment</i> , 2007 , 41, 8455-8467	5.3	265
231	The relative greenhouse gas impacts of realistic dietary choices. <i>Energy Policy</i> , 2012 , 43, 184-190	7.2	220
230	Isoprene synthesis protects transgenic tobacco plants from oxidative stress. <i>Plant, Cell and Environment</i> , 2009 , 32, 520-31	8.4	180
229	Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations. <i>Journal of Atmospheric Chemistry</i> , 1991 , 12, 181-194	3.2	177
228	The effect of trade between China and the UK on national and global carbon dioxide emissions. <i>Energy Policy</i> , 2008 , 36, 1907-1914	7.2	167
227	Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). <i>International Journal of Mass Spectrometry</i> , 2003 , 223-224, 561-578	1.9	155
226	The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. <i>Journal of Environmental Monitoring</i> , 2003 , 5, 1-7		145
225	Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8037-8052	6.8	143
224	A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 1-1		142
223	Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18447-51	11.5	140
222	Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters. <i>Nature</i> , 1990 , 344, 56-8	50.4	138

221	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1039-1050	6.8	136
220	Scenario Archetypes: Converging Rather than Diverging Themes. Sustainability, 2012, 4, 740-772	3.6	120
219	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 169-199	6.8	120
218	Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 279-298	6.8	118
217	Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. <i>Energy Policy</i> , 2013 , 63, 1065-1074	7.2	109
216	The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. <i>Global Change Biology</i> , 2005 , 11, 60-69	11.4	104
215	Discrimination of plant volatile signatures by an electronic nose: aA potential technology for plant pest and disease monitoring. <i>Environmental Science & Environmental Scien</i>	10.3	103
214	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 3065-3114	6.8	102
213	Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8391-8412	6.8	102
212	Isoprene emissions influence herbivore feeding decisions. <i>Plant, Cell and Environment</i> , 2008 , 31, 1410-5	8.4	101
212	Isoprene emissions influence herbivore feeding decisions. <i>Plant, Cell and Environment</i> , 2008 , 31, 1410-5 The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric Environment</i> , 2001 , 35, 1155-1170	5.3	101
	The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric</i>		
211	The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric Environment</i> , 2001 , 35, 1155-1170 Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and		101
211	The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric Environment</i> , 2001 , 35, 1155-1170 Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. <i>Journal of Geophysical Research</i> , 1997 , 102, 12839-12854 Forests and Their Canopies: Achievements and Horizons in Canopy Science. <i>Trends in Ecology and</i>	5.3	101 94
211 210 209	The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric Environment</i> , 2001 , 35, 1155-1170 Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. <i>Journal of Geophysical Research</i> , 1997 , 102, 12839-12854 Forests and Their Canopies: Achievements and Horizons in Canopy Science. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 438-451 Performance characteristics and applications of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds in ambient air. <i>Environmental Science & Canopy</i> ,	5.3	101949390
211 210 209 208	The atmospheric chemistry of sulphur and nitrogen in power station plumes. <i>Atmospheric Environment</i> , 2001 , 35, 1155-1170 Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. <i>Journal of Geophysical Research</i> , 1997 , 102, 12839-12854 Forests and Their Canopies: Achievements and Horizons in Canopy Science. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 438-451 Performance characteristics and applications of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds in ambient air. <i>Environmental Science & Description</i> , 2002 , 36, 1554-60 Benchmarking sustainability in cities: The role of indicators and future scenarios. <i>Global</i>	10.9	101949390
211 210 209 208 207	The atmospheric chemistry of sulphur and nitrogen in power station plumes. Atmospheric Environment, 2001, 35, 1155-1170 Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. Journal of Geophysical Research, 1997, 102, 12839-12854 Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends in Ecology and Evolution, 2017, 32, 438-451 Performance characteristics and applications of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds in ambient air. Environmental Science & Environmental Science & Environmental Change, 2012, 22, 245-254 Fluxes and concentrations of volatile organic compounds above central London, UK. Atmospheric	5.3 10.9 10.3	10194939087

203	Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. <i>Elementa</i> , 2018 , 6,	3.6	79
202	Atmosphere Hydrogen Peroxide and Organic Hydroperoxides: A Review. <i>Critical Reviews in Environmental Science and Technology</i> , 1999 , 29, 175-228	11.1	78
201	Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring[] <i>Plant, Cell and Environment</i> , 2004 , 27, 393-401	8.4	76
200	Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK). <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1971-1987	6.8	75
199	Development and application of an urban tree air quality score for photochemical pollution episodes using the Birmingham, United Kingdom, area as a case study. <i>Environmental Science & Technology</i> , 2005 , 39, 6730-8	10.3	75
198	A qualitative assessment of the emission of non-methane hydrocarbon compounds from the biosphere to the atmosphere in the U.K.: Present knowledge and uncertainties. <i>Atmospheric Environment Part A General Topics</i> , 1992 , 26, 3069-3077		74
197	Introduction to the special issue In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) [IAtmospheric Chemistry and Physics, 2019, 19, 7519-75]	46 8	73
196	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8995-9017	6.8	73
195	Using green infrastructure to improve urban air quality (GI4AQ). Ambio, 2020, 49, 62-73	6.5	71
194	Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2 concentration, climate, and land use. <i>Global Biogeochemical Cycles</i> , 2010 , 24, n/a-n/a	5.9	70
193	Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. <i>Biogeosciences</i> , 2009 , 6, 1655-1670	4.6	70
192	Removal rates of selected pollutants in the runoff waters from a major rural highway. <i>Water Research</i> , 1992 , 26, 311-319	12.5	70
191	Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. <i>Global Change Biology</i> , 2011 , 17, 1595-1610	11.4	66
190	Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10243-10269	6.8	64
189	Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. <i>Physiologia Plantarum</i> , 2007 , 130, 58-66	4.6	64
188	Impacts of biofuel cultivation on mortality and crop yields. <i>Nature Climate Change</i> , 2013 , 3, 492-496	21.4	63
187	An integrated budget for selected pollutants for a major rural highway. <i>Science of the Total Environment</i> , 1990 , 93, 375-84	10.2	61
186	Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. <i>Nature Geoscience</i> , 2018 , 11, 640-644	18.3	59

185	Circadian control of isoprene emissions from oil palm (Elaeis guineensis). <i>Plant Journal</i> , 2006 , 47, 960-8	6.9	59
184	Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay. <i>Journal of Geophysical Research</i> , 1996 , 101, 22855-22867		57
183	Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 3196-209	5.8	55
182	Isoprene emissions from the grass Arundo donax L. are not linked to photorespiration. <i>Plant Science</i> , 1990 , 66, 139-144	5.3	54
181	Isoprene and monoterpene emissions from a eucalyptus plantation in Portugal. <i>Journal of Geophysical Research</i> , 1997 , 102, 15875-15887		53
180	Greenhouse gas emissions of food waste disposal options for UK retailers. <i>Food Policy</i> , 2018 , 77, 50-58	5	52
179	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-435	8 6.8	52
178	Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 919-939	6.8	50
177	Online analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis). <i>Tree Physiology</i> , 2004 , 24, 721-8	4.2	50
176	Dimethyl sulfide in the Amazon rain forest. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 19-32	5.9	49
175	Ground-level ozone influenced by circadian control of isoprene emissions. <i>Nature Geoscience</i> , 2011 , 4, 671-674	18.3	49
174	A highly spatially and temporally resolved inventory for biogenic isoprene and monoterpene emissions: Model description and application to Great Britain. <i>Journal of Geophysical Research</i> , 2003 , 108,		49
173	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, 115-170	1.2	49
172	Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1193-1201	6.8	48
171	Urban land classification and its uncertainties using principal component and cluster analyses: A case study for the UK West Midlands. <i>Landscape and Urban Planning</i> , 2006 , 78, 311-321	7.7	48
170	Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a		46
169	Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. <i>New Phytologist</i> , 2014 , 201, 205-216	9.8	44
168	Study of the Degradation by Ozone of Adsorbents and of Hydrocarbons Adsorbed during the Passive Sampling of Air. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	44

167	Uptake of aldehydes and ketones at typical indoor concentrations by houseplants. <i>Environmental Science & Environmental Scienc</i>	10.3	42
166	Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur. <i>Global Change Biology</i> , 2004 , 10, 1835-1843	11.4	41
165	ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2000 , 52, 750-778	3.3	41
164	Build-up of artifacts on adsorbents during storage and its effect on passive sampling and gas chromatography-flame ionization detection of low concentrations of volatile organic compounds in air. <i>Journal of Chromatography A</i> , 1994 , 688, 368-374	4.5	41
163	BIOGENIC VOLATILE ORGANIC COMPOUND (VOC) EMISSION ESTIMATES FROM AN URBAN TREE CANOPY 2003 , 13, 927-938		39
162	Exposure to isoprene promotes flowering in plants. <i>Journal of Experimental Botany</i> , 1995 , 46, 1629-163	17	39
161	Soil and street dust heavy metal concentrations in and around Cuenca, Ecuador. <i>Environmental Pollution</i> , 1990 , 63, 129-36	9.3	39
160	Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters. <i>Plant, Cell and Environment</i> , 2009 , 32, 31-45	8.4	38
159	ClimateBociety feedbacks and the avoidance of dangerous climate change. <i>Nature Climate Change</i> , 2012 , 2, 668-671	21.4	38
158	Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.). <i>Plant Molecular Biology</i> , 2010 , 73, 547-58	4.6	38
157	An analysis of rapid increases in condensation nuclei concentrations at a remote coastal site in western Ireland. <i>Journal of Geophysical Research</i> , 1999 , 104, 13771-13780		37
156	PAHs in Air Adjacent to Two Inland Water Bodies. <i>Environmental Science & Environmental Science & Envi</i>	10.3	35
155	Natural sulphur species from the North Atlantic and their contribution to the United Kingdom sulphur budget. <i>Journal of Geophysical Research</i> , 1992 , 97, 2475		34
154	Ozone-hydrocarbon interactions in plants. <i>Phytochemistry</i> , 1992 , 31, 4045-4050	4	34
153	Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories. <i>Faraday Discussions</i> , 2016 , 189, 455-72	3.6	33
152	The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4121-4134	6.8	33
151	Isoprene synthesis in plants: lessons from a transgenic tobacco model. <i>Plant, Cell and Environment</i> , 2011 , 34, 1043-1053	8.4	33
150	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 3177-95	5.8	32

(2000-2010)

149	Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7117-7125	6.8	32	
148	Field studies of isoprene emissions from vegetation in the northwest Mediterranean region. Journal of Geophysical Research, 1998 , 103, 25499-25511		32	
147	Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom. <i>Journal of Geophysical Research</i> , 1996 , 101, 22799-2280	6	32	
146	A proton transfer reaction mass spectrometry based system for determining plant uptake of volatile organic compounds. <i>Atmospheric Environment</i> , 2007 , 41, 1736-1746	5.3	31	
145	Observations of new particle production in the atmosphere of a moderately polluted site in eastern England. <i>Journal of Geophysical Research</i> , 2000 , 105, 17819-17832		31	
144	Evaluation of tenax-GR adsorbent for the passive sampling of volatile organic compounds at low concentrations. <i>Atmospheric Environment Part A General Topics</i> , 1993 , 27, 1865-1872		31	
143	Atmospheric concentrations and chemistry of alkyllead compounds and environmental alkylation of lead. <i>Environmental Science & Environmental Science &</i>	10.3	30	
142	Spatially-varying surface roughness and ground-level air quality in an operational dispersion model. <i>Environmental Pollution</i> , 2014 , 185, 44-51	9.3	29	
141	The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 351-359		29	
140	A sensitive, specific method for the determination of tetraalkyllead compounds in air by gas chromatography/atomic absorption spectrometry. <i>Analytica Chimica Acta</i> , 1985 , 167, 277-287	6.6	29	
139	Elevated levels of OH observed in haze events during wintertime in central Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14847-14871	6.8	29	
138	Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1011-1024	6.8	28	
137	Seasonal and diurnal trends in concentrations and fluxes of volatile organic compounds in central London. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7777-7796	6.8	28	
136	Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO(2) concentrations. <i>Planta</i> , 2009 , 229, 837-46	4.7	28	
135	Determination of biogenic volatile organic compounds (C8ሺ16) in the coastal atmosphere at Mace Head, Ireland. <i>Analytica Chimica Acta</i> , 2001 , 428, 61-72	6.6	27	
134	Artefacts in sorption experiments with trace metals. Science of the Total Environment, 1994, 152, 227-23	3 & 0.2	27	
133	NO_x and O₃ above a tropical rainforest: an analysis with a global and box model. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10607-10620	6.8	26	
132	Extrapolating branch enclosure measurements to estimates of regional scale biogenic VOC fluxes in the northwestern Mediterranean basin. <i>Journal of Geophysical Research</i> , 2000 , 105, 11573-11583		26	

131	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 3210-24	5.8	25
130	Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence. <i>Photosynthesis Research</i> , 2010 , 104, 49-59	3.7	25
129	Measurement of carbon dioxide and hydrocarbon fluxes from a Sitka Spruce forest using micrometeorological techniques. <i>Journal of Geophysical Research</i> , 1996 , 101, 22807-22815		25
128	Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10965-10984	6.8	24
127	Application of passive samplers to the monitoring of low concentration organic vapours in indoor and ambient air: A review. <i>Environmental Technology (United Kingdom)</i> , 1991 , 12, 1055-1062	2.6	24
126	Behavior of urban dust contaminated by Chernobyl fallout: environmental half-lives and transfer coefficients. <i>Environmental Science & Environmental & Environ</i>	10.3	22
125	Measurements of alkyllead compounds in the gas and aerosol phase in urban and rural atmospheres. <i>Science of the Total Environment</i> , 1985 , 44, 235-44	10.2	22
124	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO_{<i>x</i>} in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2125-2147	6.8	22
123	Concentrations of selected volatile organic compounds at kerbside and background sites in central London. <i>Atmospheric Environment</i> , 2014 , 95, 456-467	5.3	21
122	Effects of the spatial resolution of climate data on estimates of biogenic isoprene emissions. <i>Atmospheric Environment</i> , 2013 , 70, 1-6	5.3	21
121	Biogenic emissions of volatile organic compounds from gorse (Ulex europaeus): Diurnal emission fluxes at Kelling Heath, England. <i>Journal of Geophysical Research</i> , 1997 , 102, 18903-18915		21
120	The solubility and partitioning of atmospherically derived trace metals in artificial and natural waters: A review. <i>Atmospheric Environment Part A General Topics</i> , 1993 , 27, 1567-1578		21
119	Understanding ozone plant chemistry. Environmental Science & amp; Technology, 1992, 26, 1890-1891	10.3	21
118	Formation and decomposition of trialkyllead compounds in the atmosphere. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	21
117	Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5083-5097	6.8	20
116	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. <i>Geoscientific Model Development</i> , 2012 , 5, 193-221	6.3	20
115	Critical issues in trace gas biogeochemistry and global change. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 1629-42	3	20
114	The deposition of selected pollutants adjacent to a major rural highway. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 979-983		20

(1995-2016)

113	Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7149-7170	6.8	19
112	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12781-12801	6.8	19
111	The determination of individual gaseous ionic alkyllead species in the atmosphere. <i>Analytica Chimica Acta</i> , 1986 , 188, 229-238	6.6	19
110	Plant pest and disease diagnosis using electronic nose and support vector machine approach. Journal of Plant Diseases and Protection, 2012, 119, 200-207	1.5	18
109	Passive sampling and gas chromatographic determination of low concentrations of reactive hydrocarbons in ambient air with reduction gas detector. <i>Journal of Chromatography A</i> , 1993 , 648, 191-	1 9 7	18
108	The environmental half-lives and mean residence times of contaminants in dust for an urban environment: Barrow-in-Furness. <i>Science of the Total Environment</i> , 1990 , 93, 403-10	10.2	18
107	VOC emission rates over London and South East England obtained by airborne eddy covariance. <i>Faraday Discussions</i> , 2017 , 200, 599-620	3.6	17
106	Trapping efficiencies of capillary cold traps for C2-C10 hydrocarbons. <i>Journal of Chromatography A</i> , 1992 , 627, 219-226	4.5	17
105	Organic lead compounds in vehicle exhaust. Applied Organometallic Chemistry, 1988, 2, 95-100	3.1	17
104	Measurements of traffic-dominated pollutant emissions in a Chinese megacity. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8737-8761	6.8	17
103	Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14933-14947	6.8	17
102	Resource acquisition, distribution and end-use efficiencies and the growth of industrial society. <i>Earth System Dynamics</i> , 2015 , 6, 689-702	4.8	16
101	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514	3.6	16
100	Simulated effects of changes in direct and diffuse radiation on canopy scale isoprene emissions from vegetation following volcanic eruptions. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11723-1173	16.8	15
99	The design and application of a novel automated sampler for wet and dry deposition to water surfaces. <i>Science of the Total Environment</i> , 1993 , 135, 55-66	10.2	15
98	A method for the sampling and removal of ionic alkyllead compounds from aqueous solution using ion exchange media. <i>Water Research</i> , 1991 , 25, 91-94	12.5	15
97	Investigating the impacts of anthropogenic and biogenic VOC emissions and elevated temperatures during the 2003 ozone episode in the UK. <i>Atmospheric Environment</i> , 2013 , 74, 393-401	5.3	14
96	Detection methods for the analysis of biogenic non-methane hydrocarbons in air. <i>Journal of Chromatography A</i> , 1995 , 710, 39-50	4.5	13

95	A model of environmental behaviour of contaminated dust and its application to determining dust fluxes and residence times. <i>Atmospheric Environment</i> , 1994 , 28, 679-687	5.3	13
94	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2407-2426	6.8	13
93	The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground. <i>PLoS ONE</i> , 2018 , 13, e0208825	3.7	13
92	Quantification of VOC emission rates from the biosphere. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 937-944	14.6	12
91	Controlled environment fumigation chambers for the study of reactive air pollutant effects on plants. <i>Atmospheric Environment Part A General Topics</i> , 1993 , 27, 679-683		12
90	The trace metal dissolution kinetics of three rural atmospheric aerosols in a range of natural fresh water types. <i>Water Research</i> , 1993 , 27, 243-254	12.5	12
89	Development and application of a Lagrangian model to determine the origins of ozone episodes in the UK. <i>Atmospheric Environment</i> , 2010 , 44, 631-641	5.3	11
88	The role of isoprene in insect herbivory. <i>Plant Signaling and Behavior</i> , 2008 , 3, 1141-2	2.5	11
87	Methane: importance, sources and sinks.143-151		11
86	Hybrid life-cycle assessment for robust, best-practice carbon accounting. <i>Journal of Cleaner Production</i> , 2019 , 208, 35-43	10.3	11
85	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-	4 3 .6	11
84	Emission rates of C8t115 VOCs from seaweed and sand in the inter-tidal zone at Mace Head, Ireland. <i>Atmospheric Environment</i> , 2002 , 36, 5311-5321	5.3	10
83	Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model. <i>Journal of Geophysical Research</i> , 2000 , 105, 26379-26392		10
82	Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location. <i>Environmental Science & Environmental Science & Environ</i>	10.3	9
81	Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability. <i>Biogeosciences</i> , 2017 , 14, 5571-5594	4.6	9
80	A futures-based analysis for urban air quality remediation. <i>Proceedings of the Institution of Civil Engineers: Engineering Sustainability</i> , 2012 , 165, 21-36	0.9	9
79	Field measurements of dimethyl sulphide and its oxidation products in the atmosphere. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1997 , 352, 183-189	5.8	9
78	Elucidation of the tropospheric reactions of biogenic sulfur species from a field measurement campaign in NW Scotland. <i>Chemosphere</i> , 1994 , 28, 543-557	8.4	9

77	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2383-2406	6.8	9
76	Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8077-8100	6.8	8
75	Comment on the atmospheric distribution of lead over a number of marine regions. <i>Marine Chemistry</i> , 1984 , 15, 189-190	3.7	8
74	Gas chromatographic determination of volatile alkenes with on-column bromination and electron-capture detection. <i>Journal of Chromatography A</i> , 1995 , 690, 187-195	4.5	7
73	Kinetics of dissolution of lead and zinc from rural atmospheric aerosols in freshwater and synthetic solutions. <i>Water Research</i> , 1994 , 28, 1703-1709	12.5	7
72	Sampling of gaseous alkyllead compounds using cryotrapping: Validation and field results. <i>Science of the Total Environment</i> , 1989 , 84, 211-221	10.2	7
71	Development of sensitive GC-AAS instrumentation for analysis of organometallic species in the environment. <i>International Journal of Environmental Analytical Chemistry</i> , 1985 , 21, 89-104	1.8	7
70	Can a global model chemical mechanism reproduce NO, NO ₂ , and O ₃ measurements above a tropical rainforest?		7
69	Emissions of VOCs from Stressed and Unstressed Vegetation 1997 , 366-371		7
68	Nitrous oxide: importance, sources and sinks.201-206		7
67	Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions. <i>Journal of Atmospheric Chemistry</i> , 2010 , 65, 89-110	3.2	6
66	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and Bioenergy</i> , 2008 , 32, 838-856	5.3	6
66 65	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and</i>		
	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and Bioenergy</i> , 2008 , 32, 838-856 Temporal patterns, sources, and sinks of C8-C16 hydrocarbons in the atmosphere of Mace Head,		6
65	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and Bioenergy</i> , 2008 , 32, 838-856 Temporal patterns, sources, and sinks of C8-C16 hydrocarbons in the atmosphere of Mace Head, Ireland. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 4-1 The impact of ozone, isoprene and propene on antioxidant levels in two leaf classes of velvet bean	5.3	6
65 64	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and Bioenergy</i> , 2008 , 32, 838-856 Temporal patterns, sources, and sinks of C8-C16 hydrocarbons in the atmosphere of Mace Head, Ireland. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 4-1 The impact of ozone, isoprene and propene on antioxidant levels in two leaf classes of velvet bean (Mucuna pruriens L.). <i>Journal of Experimental Botany</i> , 1998 , 49, 115-123 Effects of reactive hydrocarbons and hydrogen peroxide on antioxidant activity in cherry leaves.	5·3 7	6666
65 64 63	Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain. <i>Biomass and Bioenergy</i> , 2008 , 32, 838-856 Temporal patterns, sources, and sinks of C8-C16 hydrocarbons in the atmosphere of Mace Head, Ireland. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 4-1 The impact of ozone, isoprene and propene on antioxidant levels in two leaf classes of velvet bean (Mucuna pruriens L.). <i>Journal of Experimental Botany</i> , 1998 , 49, 115-123 Effects of reactive hydrocarbons and hydrogen peroxide on antioxidant activity in cherry leaves. <i>Environmental Pollution</i> , 1995 , 88, 19-26 Environmental analysis using gas chromatography latomic absorption spectrometry. <i>TrAC</i> -	5·3 7 9·3	6666

59	The impact of ozone, isoprene and propene on antioxidant levels in two leaf classes of velvet bean (Mucuna pruriens L.). <i>Journal of Experimental Botany</i> , 1998 , 49, 115-123	7	6
58	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. <i>Environmental Science Atmospheres</i> , 2021 , 1, 104-7	117	6
57	Low-NO atmospheric oxidation pathways in a polluted megacity. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1613-1625	6.8	6
56	System to control indoor air quality in energy efficient buildings. <i>Urban Climate</i> , 2015 , 14, 475-485	6.8	5
55	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169¶99, 2010. Atmospheric Chemistry and Physics	6.8	5
54	, 2010 , 10, 563-563 Influence of Transport over a Mountain Ridge on the Chemical Composition of Marine Aerosols during the ACE-2 Hillcloud Experiment. <i>Journal of Atmospheric Chemistry</i> , 2002 , 41, 83-107	3.2	5
53	Determination of reactive hydrocarbons by capillary gas chromatography with the reduction gas detector. <i>Journal of Chromatography A</i> , 1994 , 679, 115-121	4.5	5
52	The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest		5
51	Scaling Emissions from Agroforestry Plantations and Urban Habitats. <i>Tree Physiology</i> , 2013 , 415-450		5
50	Application of multiple wind-roses to improve the modelling of ground-level ozone in the UK. <i>Atmospheric Environment</i> , 2006 , 40, 7480-7493	5.3	4
49	Study of the responses of a gas chromatographyleduction gas detector system to gaseous hydrocarbons under different conditions. <i>Analytica Chimica Acta</i> , 1995 , 300, 193-200	6.6	4
48	Modelling and measurement of the dispersion of radioactive emissions from a nuclear fuel fabrication plant in the U.K <i>Atmospheric Environment Part A General Topics</i> , 1992 , 26, 3079-3087		4
47	Rainforest-like Atmospheric Chemistry in a Polluted Megacity		4
46	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India		4
45	Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in Western Italy		4
44	The "Business-As-Usual" growth of global primary energy use and carbon dioxide emissions [historical trends and near-term forecasts		4
43	The Sampling and Analysis of Volatile Organic Compounds in the Atmosphere 1999 , 119-157		4
42	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. <i>Atmospheric Environment: X</i> , 2021 , 11, 100115	2.8	4

41	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry 2020,	3	
40	Seasonal analysis of submicron aerosol in Old Delhi using high resolution aerosol mass spectrometry: Chemical characterisation, source apportionment and new marker identification	3	
39	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _x in Beijing	3	
38	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India	3	
37	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest	3	
36	Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK)	3	
35	Fluxes and concentrations of volatile organic compounds above central London, UK	3	
34	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. <i>Faraday Discussions</i> , 2021 , 226, 382-408	3	
33	Introduction to Special Issue In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) 2018 ,	3	
32	Elevated levels of OH observed in haze events during wintertime in central Beijing 2020,	2	
31	Reply to 'Circadian control of global isoprene emissions'. <i>Nature Geoscience</i> , 2012 , 5, 435-436	3 2	
30	Development of a calibration system to evaluate VOC losses in a branch enclosure. <i>Journal of Environmental Monitoring</i> , 2000 , 2, 133-8	2	
29	Environmental radon: A brief review. <i>Environmental Technology (United Kingdom)</i> , 1990 , 11, 387-392 2.6	2	
28	PM ₁ composition and source apportionment at two sites in Delhi, India across multiple seasons	2	
27	Large estragole fluxes from oil palms in Borneo	2	
26	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia	2	
25	Isoprene chemistry in pristine and polluted Amazon environments: Eulerian and Lagrangian model frameworks and the strong bearing they have on our understanding of surface ozone and predictions of rainforest exposure to this priority pollutant	2	
24	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. 6.8 Atmospheric Chemistry and Physics, 2021 , 21, 10133-10158	2	

23	PM₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11655-11667	6.8	2
22	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13609-13630	6.8	2
21	Urban case studies: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 473-514	3.6	1
20	Atmospheric chemistry and the biosphere: general discussion. <i>Faraday Discussions</i> , 2017 , 200, 195-228	3.6	1
19	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2 2011		1
18	An exposure system for the calibration of passive samplers to volatile organic compounds at low (ppbv) concentrations. <i>Journal of the Air and Waste Management Association</i> , 1994 , 44, 1299-302		1
17	Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo		1
16	Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation		1
15	Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quali	ty	1
14	Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species		1
13	Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK		1
12	Seasonal trends in concentrations and fluxes of volatile organic compounds above central London		1
11	Simulating atmospheric composition over a South-East Asian tropical rainforest: Performance of a chemistry box model		1
10	Spatially and temporally resolved measurements of NO_{<i>x</i>} fluxes by airborne eddy covariance over Greater London. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15283-15298	6.8	1
9	Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy		1
8	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions		1
7	Urban form strongly mediates the allometric scaling of airshed pollution concentrations. <i>Environmental Research Letters</i> , 2019 , 14, 124078	6.2	1
6	Reply to: Complexities between plants and the atmosphere. <i>Nature Geoscience</i> , 2019 , 12, 695-695	18.3	O

LIST OF PUBLICATIONS

5	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6315-6330	6.8	O
4	Non-methane volatile organic compounds emitted from domestic fuels in Delhi: Emission factors and total city-wide emissions. <i>Atmospheric Environment: X</i> , 2021 , 11, 100127	2.8	О
3	Effects of Climate-induced Changes in Isoprene Emissions after the eruption of Mount Pinatubo. <i>Procedia Environmental Sciences</i> , 2011 , 6, 199-205		
2	The effects of reactive hydrocarbons on plants. <i>Proceedings of the Royal Society of Edinburgh Section B Biological Sciences</i> , 1994 , 102, 307-311		
1	Numerical modelling strategies for the urban atmosphere: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 635-60	3.6	