Gabor Foldvari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/142428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Frontiers in Public Health, 2014, 2, 251.	2.7	335
2	Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites and Vectors, 2014, 7, 365.	2.5	207
3	Dermacentor reticulatus: a vector on the rise. Parasites and Vectors, 2016, 9, 314.	2.5	187
4	Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites and Vectors, 2016, 9, 97.	2.5	101
5	Ixodid tick species attaching to dogs in Hungary. Veterinary Parasitology, 2005, 129, 125-131.	1.8	84
6	Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasites and Vectors, 2019, 12, 328.	2.5	84
7	First serological and molecular evidence on the endemicity of Anaplasma ovis and A. marginale in Hungary. Veterinary Microbiology, 2007, 122, 316-322.	1.9	81
8	Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Veterinary Parasitology, 2008, 154, 354-359.	1.8	77
9	Babesia canis canis in dogs from Hungary: detection by PCR and sequencing. Veterinary Parasitology, 2005, 127, 221-226.	1.8	70
10	Ticks and the city: Ectoparasites of the Northern white-breasted hedgehog (Erinaceus roumanicus) in an urban park. Ticks and Tick-borne Diseases, 2011, 2, 231-234.	2.7	69
11	Hard Ticks Infesting Dogs in Hungary and their Infection with Babesia and Borrelia Species. Parasitology Research, 2007, 101, 25-34.	1.6	67
12	Investigation of the Ecology of <i>Francisella tularensis</i> During an Inter-Epizootic Period. Vector-Borne and Zoonotic Diseases, 2011, 11, 1031-1035.	1.5	66
13	<i>Borrelia spielmanii</i> Erythema Migrans, Hungary. Emerging Infectious Diseases, 2005, 11, 1794-1795.	4.3	59
14	CandidatusNeoehrlichia mikurensis andAnaplasma phagocytophilumin Urban Hedgehogs. Emerging Infectious Diseases, 2014, 20, 496-8.	4.3	57
15	Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasites and Vectors, 2015, 8, 176.	2.5	57
16	DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks. PLoS ONE, 2016, 11, e0167735.	2.5	56
17	Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasites and Vectors, 2015, 8, 309.	2.5	50
18	Eco-epidemiology of Novel Bartonella Genotypes from Parasitic Flies of Insectivorous Bats. Microbial Ecology, 2018, 76, 1076-1088.	2.8	50

GABOR FOLDVARI

#	Article	IF	CITATIONS
19	Transmission of Rickettsia slovaca and Rickettsia raoultii by male Dermacentor marginatus and Dermacentor reticulatus ticks to humans. Diagnostic Microbiology and Infectious Disease, 2013, 76, 387-389.	1.8	43
20	East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin. Parasites and Vectors, 2017, 10, 39.	2.5	42
21	Synanthropic rodents and their ectoparasites as carriers of a novel haemoplasma and vector-borne, zoonotic pathogens indoors. Parasites and Vectors, 2015, 8, 27.	2.5	41
22	Contributions to the phylogeny of Ixodes (Pholeoixodes) canisuga, I. (Ph.) kaiseri, I. (Ph.) hexagonus and a simple pictorial key for the identification of their females. Parasites and Vectors, 2017, 10, 545.	2.5	40
23	Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks and Tick-borne Diseases, 2015, 6, 111-116.	2.7	38
24	Host Phylogeny, Geographic Overlap, and Roost Sharing Shape Parasite Communities in European Bats. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	34
25	Morphological and molecular characterization of Karyolysus – a neglected but common parasite infecting some European lizards. Parasites and Vectors, 2014, 7, 555.	2.5	33
26	Molecular investigations of the bat tick Argas vespertilionis (Ixodida: Argasidae) and Babesia vesperuginis (Apicomplexa: Piroplasmida) reflect "bat connection―between Central Europe and Central Asia. Experimental and Applied Acarology, 2017, 72, 69-77.	1.6	33
27	Prevalence of Borrelia miyamotoi and Borrelia burgdorferi sensu lato in questing ticks from a recreational coniferous forest of East Saxony, Germany. Ticks and Tick-borne Diseases, 2017, 8, 922-927.	2.7	29
28	Effect of Climate and Land Use on the Spatio-Temporal Variability of Tick-Borne Bacteria in Europe. International Journal of Environmental Research and Public Health, 2018, 15, 732.	2.6	29
29	Roadâ€killed mammals provide insight into tickâ€borne bacterial pathogen communities within urban habitats. Transboundary and Emerging Diseases, 2019, 66, 277-286.	3.0	28
30	Detection ofBorrelia burgdorferiSensu Lato andAnaplasma phagocytophilumin Small Mammals and Ectoparasites in Hungary. Vector-Borne and Zoonotic Diseases, 2011, 11, 1499-1501.	1.5	26
31	Establishment of <i>Biomphalaria tenagophila</i> Snails in Europe. Emerging Infectious Diseases, 2008, 14, 1812-1814.	4.3	25
32	Prevalence and diversity of human pathogenic rickettsiae in urban versus rural habitats, Hungary. Experimental and Applied Acarology, 2016, 68, 223-226.	1.6	25
33	Serological and molecular detection of Theileria equi infection in horses in Hungary. Veterinary Parasitology, 2013, 192, 143-148.	1.8	24
34	Mitochondrial gene heterogeneity of the bat soft tick Argas vespertilionis (Ixodida: Argasidae) in the Palaearctic. Parasites and Vectors, 2017, 10, 109.	2.5	24
35	Detection ofBorrelia burgdorferisensu lato in Lizards and Their Ticks from Hungary. Vector-Borne and Zoonotic Diseases, 2009, 9, 331-336.	1.5	23
36	Vector-Borne Agents Detected in Fleas of the Northern White-Breasted Hedgehog. Vector-Borne and Zoonotic Diseases, 2014, 14, 74-76.	1.5	20

GABOR FOLDVARI

#	Article	IF	CITATIONS
37	Serological evidence for Babesia canis infection of horses and an endemic focus of B. caballi in Hungary. Acta Veterinaria Hungarica, 2007, 55, 491-500.	0.5	19
38	First detection of small babesiae in two dogs in Hungary. Veterinary Record, 2004, 154, 176-178.	0.3	16
39	ldentification of Hepatozoon erhardovae Krampitz, 1964 from bank voles (Myodes glareolus) and fleas in Southern Hungary. Parasitology Research, 2016, 115, 2409-2413.	1.6	16
40	Dicipivirus (family Picornaviridae) in wild Northern white-breasted hedgehog (Erinaceus roumanicus). Archives of Virology, 2018, 163, 175-181.	2.1	16
41	Susceptibility of the Common Hamster (Cricetus cricetus) to Francisella tularensis and Its Effect on the Epizootiology of Tularemia in an Area Where Both Are Endemic. Journal of Wildlife Diseases, 2010, 46, 1316-1320.	0.8	15
42	Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus, 2017, 28, 20-30.	0.5	14
43	3. Life cycle and ecology of Ixodes ricinus: the roots of public health importance. Ecology and Control of Vector-Borne Diseases, 2016, , 31-40.	0.7	13
44	Contact with horses is a risk factor for tick-borne lymphadenopathy (TIBOLA): a case control study. Wiener Klinische Wochenschrift, 2012, 124, 611-617.	1.9	12
45	Fatal acute babesiosis in captive grey wolves (Canis lupus) due to Babesia canis. Ticks and Tick-borne Diseases, 2014, 5, 281-283.	2.7	12
46	Emergence of <i>Hyalomma marginatum</i> and <i>Hyalomma rufipes</i> adults revealed by citizen science tick monitoring in Hungary. Transboundary and Emerging Diseases, 2022, 69, .	3.0	10
47	8. Neglected hosts: the role of lacertid lizards and medium-sized mammals in the ecoepidemiology of Lyme borreliosis. Ecology and Control of Vector-Borne Diseases, 2016, , 103-126.	0.7	9
48	Diverse picornaviruses are prevalent among free-living and laboratory rats (Rattus norvegicus) in Hungary and can cause disseminated infections. Infection, Genetics and Evolution, 2019, 75, 103988.	2.3	6
49	High Prevalence and Low Diversity of <i>Rickettsia</i> in <i>Dermacentor reticulatus</i> Ticks, Central Europe. Emerging Infectious Diseases, 2022, 28, 893-895.	4.3	5
50	New challenges posed by ticks and tick-borne diseases. , 0, , 1.		5
51	Harm or protection? The adaptive function of tick toxins. Evolutionary Applications, 2021, 14, 271-277.	3.1	4
52	First broad-range molecular screening of tick-borne pathogens in Ixodes (Pholeoixodes) kaiseri, with special emphasis on piroplasms. Acta Veterinaria Hungarica, 2020, 68, 30-33.	0.5	4
53	Analysis of a novel RNA virus in a wild northern white-breasted hedgehog (Erinaceus roumanicus). Archives of Virology, 2019, 164, 3065-3071.	2.1	3
54	Patterns in the distribution and directional asymmetry of fleas living on the northern white-breasted hedgehog Erinaceus roumanicus. Folia Parasitologica, 2017, 64, .	1.3	3

#	Article	IF	CITATIONS
55	First record of mermithid larva (Nematoda: Mermithidae) in Anopheles maculipennis complex (Diptera:) Tj ETQq1	1 0,78431 1.5	4 ₂ rgBT /Ov∈
56	Genome characterization, prevalence and tissue distribution of astrovirus, hepevirus and norovirus among wild and laboratory rats (Rattus norvegicus) and mice (Mus musculus) in Hungary. Infection, Genetics and Evolution, 2021, 93, 104942.	2.3	2
57	Tick bite induced αâ€gal syndrome highlights anticancer effect of allergy. BioEssays, 2021, , 2100142.	2.5	1