
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009, 139, 1268-1278.	13.5	1,384
2	Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011, 476, 454-457.	13.7	1,261
3	Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements. PLoS Biology, 2004, 2, e69.	2.6	713
4	Beyond insecticides: new thinking on an ancient problem. Nature Reviews Microbiology, 2013, 11, 181-193.	13.6	319
5	Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress. PLoS Pathogens, 2009, 5, e1000368.	2.1	306
6	The Relative Importance of Innate Immune Priming in Wolbachia-Mediated Dengue Interference. PLoS Pathogens, 2012, 8, e1002548.	2.1	288
7	Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia. PLoS Neglected Tropical Diseases, 2014, 8, e2688.	1.3	288
8	Wolbachia density and virulence attenuation after transfer into a novel host. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2918-2923.	3.3	268
9	Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia. PLoS Pathogens, 2013, 9, e1003459.	2.1	232
10	Modeling the impact on virus transmission of <i>Wolbachia</i> -mediated blocking of dengue virus infection of <i>Aedes aegypti</i> . Science Translational Medicine, 2015, 7, 279ra37.	5.8	204
11	Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level. PLoS ONE, 2010, 5, e13398.	1.1	168
12	Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedes aegypti. PLoS Neglected Tropical Diseases, 2009, 3, e516.	1.3	161
13	Competition for Amino Acids Between Wolbachia and the Mosquito Host, Aedes aegypti. Microbial Ecology, 2014, 67, 205-218.	1.4	133
14	Host Adaptation of a <i>Wolbachia</i> Strain after Long-Term Serial Passage in Mosquito Cell Lines. Applied and Environmental Microbiology, 2008, 74, 6963-6969.	1.4	131
15	Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Molecular Biology and Evolution, 1999, 16, 12-22.	3.5	128
16	Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Neglected Tropical Diseases, 2015, 9, e0003894.	1.3	128
17	Wolbachia pipientis in Australian Spiders. Current Microbiology, 2004, 49, 208-14.	1.0	122
18	Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 2013, 7, e2362.	1.3	118

#	Article	IF	CITATIONS
19	Ultraconserved elements in insect genomes: A highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Research, 2005, 15, 800-808.	2.4	112
20	Increased locomotor activity and metabolism of <i>Aedes aegypti</i> infected with a life-shortening strain of <i>Wolbachia pipientis</i> . Journal of Experimental Biology, 2009, 212, 1436-1441.	0.8	97
21	An Ancient Horizontal Gene Transfer between Mosquito and the Endosymbiotic Bacterium Wolbachia pipientis. Molecular Biology and Evolution, 2009, 26, 367-374.	3.5	96
22	Genomic Evolution of the Pathogenic Wolbachia Strain, wMelPop. Genome Biology and Evolution, 2013, 5, 2189-2204.	1.1	96
23	Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. Current Opinion in Microbiology, 2004, 7, 67-70.	2.3	94
24	Human Probing Behavior of Aedes aegypti when Infected with a Life-Shortening Strain of Wolbachia. PLoS Neglected Tropical Diseases, 2009, 3, e568.	1.3	86
25	<i>Wolbachia</i> infection alters the relative abundance of resident bacteria in adult <i>Aedes aegypti</i> mosquitoes, but not larvae. Molecular Ecology, 2018, 27, 297-309.	2.0	85
26	Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster. PLoS Pathogens, 2009, 5, e1000385.	2.1	83
27	Assessing the epidemiological effect of wolbachia for dengue control. Lancet Infectious Diseases, The, 2015, 15, 862-866.	4.6	73
28	<i>Wolbachia</i> Infection Alters Olfactory-Cued Locomotion in <i>Drosophila</i> spp. Applied and Environmental Microbiology, 2008, 74, 3943-3948.	1.4	70
29	The RNAi pathway plays a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells. Scientific Reports, 2017, 7, 43847.	1.6	66
30	Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. BMC Genomics, 2013, 14, 20.	1.2	65
31	<i>Drosophila melanogaster</i> Mounts a Unique Immune Response to the Rhabdovirus <i>Sigma virus</i> . Applied and Environmental Microbiology, 2008, 74, 3251-3256.	1.4	64
32	Wolbachia -mediated virus blocking in the mosquito vector Aedes aegypti. Current Opinion in Insect Science, 2017, 22, 37-44.	2.2	62
33	Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nature Microbiology, 2019, 4, 1832-1839.	5.9	62
34	Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti. PLoS ONE, 2013, 8, e66482.	1.1	57
35	The Effect of Temperature on Wolbachia-Mediated Dengue Virus Blocking in Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 2016, 94, 812-819.	0.6	53
36	The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus. PLoS Neglected Tropical Diseases, 2017, 11, e0005426.	1.3	53

#	Article	IF	CITATIONS
37	Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia -mediated antiviral protection. Journal of Invertebrate Pathology, 2017, 143, 18-25.	1.5	47
38	The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male <i>Drosophila serrata</i> . Genetics, 2014, 196, 911-921.	1.2	46
39	Variable Infection Frequency and High Diversity of Multiple Strains of <i>Wolbachia pipientis</i> in <i>Perkinsiella</i> Planthoppers. Applied and Environmental Microbiology, 2011, 77, 2165-2168.	1.4	41
40	Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends in Parasitology, 2010, 26, 373-375.	1.5	39
41	Wolbachia-Based Dengue Virus Inhibition Is Not Tissue-Specific in Aedes aegypti. PLoS Neglected Tropical Diseases, 2016, 10, e0005145.	1.3	39
42	A Role for the Insulin Receptor in the Suppression of Dengue Virus and Zika Virus in Wolbachia-Infected Mosquito Cells. Cell Reports, 2019, 26, 529-535.e3.	2.9	38
43	Evolution of Wolbachia pipientis transmission dynamics in insects. Trends in Microbiology, 1999, 7, 297-302.	3.5	35
44	<i>Wolbachia</i> enhances insectâ€specific flavivirus infection in <i>Aedes aegypti</i> mosquitoes. Ecology and Evolution, 2018, 8, 5441-5454.	0.8	35
45	The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. Journal of Invertebrate Pathology, 2009, 100, 123-126.	1.5	33
46	Dengue virus dominates lipid metabolism modulations in Wolbachia-coinfected Aedes aegypti. Communications Biology, 2020, 3, 518.	2.0	33
47	Evolutionary potential of the extrinsic incubation period of dengue virus in <i>Aedes aegypti</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2459-2469.	1.1	30
48	Diversifying selection and host adaptation in two endosymbiont genomes. BMC Evolutionary Biology, 2007, 7, 68.	3.2	29
49	The w MelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti. Parasites and Vectors, 2011, 4, 28.	1.0	29
50	Comparative Susceptibility of Mosquito Populations in North Queensland, Australia to Oral Infection with Dengue Virus. American Journal of Tropical Medicine and Hygiene, 2014, 90, 422-430.	0.6	29
51	Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti. Parasites and Vectors, 2013, 6, 36.	1.0	28
52	An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies. BMC Genomics, 2009, 10, 40.	1.2	26
53	Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasites and Vectors, 2017, 10, 622.	1.0	25
54	Transmission and Protection against Reinfection in the Ferret Model with the SARS-CoV-2 USA-WA1/2020 Reference Isolate. Journal of Virology, 2021, 95, e0223220.	1.5	25

ELIZABETH A MCGRAW

#	Article	IF	CITATIONS
55	Sequence Polymorphism of dotA and mip Alleles Mediating Invasion and Intracellular Replication of Legionella pneumophila. Current Microbiology, 2002, 44, 314-322.	1.0	24
56	Wolbachia infection increases recapture rate of field-released Drosophila melanogaster. Symbiosis, 2011, 54, 55-60.	1.2	24
57	Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathogens, 2019, 15, e1008218.	2.1	23
58	Clonal relationship among invasive and non-invasive strains of enteroinvasiveEscherichia coliserogroups. FEMS Microbiology Letters, 1999, 172, 145-151.	0.7	21
59	Wolbachia Replication and Host Cell Division in Aedes albopictus. Current Microbiology, 2004, 49, 10-12.	1.0	21
60	Expanding the canon: Non-classical mosquito genes at the interface of arboviral infection. Insect Biochemistry and Molecular Biology, 2019, 109, 72-80.	1.2	21
61	Temperature modulates immune gene expression in mosquitoes during arbovirus infection. Open Biology, 2021, 11, 200246.	1.5	21
62	Improved accuracy of the transcriptional profiling method of age grading in Aedes aegypti mosquitoes under laboratory and semi-field cage conditions and in the presence of Wolbachia infection. Insect Molecular Biology, 2011, 20, 215-224.	1.0	19
63	Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture. Virus Evolution, 2019, 5, vez012.	2.2	19
64	Wolbachia infection in Australasian and North American populations of Haematobia irritans (Diptera:) Tj ETQq0	0 0 rgBT /(0.7	Overlock 10 T 17
65	Chikungunya Virus Transmission at Low Temperature by Aedes albopictus Mosquitoes. Pathogens, 2019, 8, 149.	1.2	17
66	Evidence of a Spotted Fever-Like Rickettsia and a Potential New Vector from Northeastern Australia. Journal of Medical Entomology, 2005, 42, 918-921.	0.9	16
67	The ecological differentiation of asexual lineages of cotton aphids: alate behaviour, sensory physiology, and differential host associations. Biological Journal of the Linnean Society, 2009, 97, 503-519.	0.7	16
68	Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions. PLoS Neglected Tropical Diseases, 2021, 15, e0009548.	1.3	16
69	HIGH-DIMENSIONAL VARIANCE PARTITIONING REVEALS THE MODULAR GENETIC BASIS OF ADAPTIVE DIVERGENCE IN GENE EXPRESSION DURING REPRODUCTIVE CHARACTER DISPLACEMENT. Evolution; International Journal of Organic Evolution, 2011, 65, 3126-3137.	1.1	15
70	Effect of repeat human blood feeding on Wolbachia density and dengue virus infection in Aedes aegypti. Parasites and Vectors, 2015, 8, 246.	1.0	15
71	Artificial Selection Finds New Hypotheses for the Mechanism of Wolbachia-Mediated Dengue Blocking in Mosquitoes. Frontiers in Microbiology, 2020, 11, 1456.	1.5	15
72	The transcriptional response of Aedes aegypti with variable extrinsic incubation periods for dengue virus. Genome Biology and Evolution, 2018, 10, 3141-3151.	1.1	14

#	Article	IF	CITATIONS
73	The nature of the immune response in novel Wolbachia-host associations. Symbiosis, 2018, 74, 225-236.	1.2	13
74	Complete genome of Aedes aegypti anphevirus in the Aag2 mosquito cell line. Journal of General Virology, 2018, 99, 832-836.	1.3	13
75	Discovery of Putative Small Non-Coding RNAs from the Obligate Intracellular Bacterium Wolbachia pipientis. PLoS ONE, 2015, 10, e0118595.	1.1	13
76	El Niño Southern Oscillation, overseas arrivals and imported chikungunya cases in Australia: A time series analysis. PLoS Neglected Tropical Diseases, 2019, 13, e0007376.	1.3	12
77	Parasitic castration by the digenian trematodeAllopodocotylesp. alters gene expression in the brain of the host molluscHaliotis asinina. FEBS Letters, 2006, 580, 3769-3774.	1.3	11
78	Infectious Diseases: Antiviral Wolbachia Limits Dengue in Malaysia. Current Biology, 2020, 30, R30-R32.	1.8	10
79	Transinfection of buffalo flies (Haematobia irritans exigua) with Wolbachia and effect on host biology. Parasites and Vectors, 2020, 13, 296.	1.0	8
80	<i>Wolbachia</i> successfully replicate in a newly established horn fly, <scp><i>Haematobia irritans</i></scp> <i>irritans</i> (L.) (Diptera: Muscidae) cell line. Pest Management Science, 2020, 76, 2441-2452.	1.7	7
81	Predicting the response of disease vectors to global change: The importance of allometric scaling. Global Change Biology, 2022, 28, 390-402.	4.2	7
82	Assessing <i>Aedes aegypti</i> candidate genes during viral infection and <i>Wolbachia</i> â€mediated pathogen blocking. Insect Molecular Biology, 2022, 31, 356-368.	1.0	7
83	<i>Wolbachia</i> infection does not alter attraction of the mosquito <i>Aedes (Stegomyia) aegypti</i> to human odours. Medical and Veterinary Entomology, 2014, 28, 457-460.	0.7	6
84	The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO. PLoS Neglected Tropical Diseases, 2021, 15, e0009637.	1.3	6
85	Using genetic variation in Aedes aegypti to identify candidate anti-dengue virus genes. BMC Infectious Diseases, 2019, 19, 580.	1.3	5
86	Wolbachia: Invasion Biology in South Pacific Butterflies. Current Biology, 2007, 17, R220-R221.	1.8	2
87	Fruit Fly Bioassay To Distinguish "Sweet―Sugar Structures. Journal of Agricultural and Food Chemistry, 2010, 58, 12885-12889.	2.4	2
88	Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes. BMC Research Notes, 2011, 4, 305.	0.6	2
89	Buffalo Flies Receptive to Wolbachia Infection: An Opportunity for Population Control?. Proceedings (mdpi), 2019, 36, 79.	0.2	0