
## Shiyu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1423906/publications.pdf Version: 2024-02-01



<u> Сніун Гін</u>

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution. Bioactive Materials, 2022, 9, 183-197.                                                                                            | 15.6 | 36        |
| 2  | 3D printing customized design of human bone tissue implant and its application. Nanotechnology<br>Reviews, 2022, 11, 1792-1801.                                                                                                                                              | 5.8  | 5         |
| 3  | Apoptotic cell-derived micro/nanosized extracellular vesicles in tissue regeneration. Nanotechnology<br>Reviews, 2022, 11, 957-972.                                                                                                                                          | 5.8  | 7         |
| 4  | Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Frontiers in Physiology, 2022, 13, 827470.                                                                                                                                            | 2.8  | 2         |
| 5  | Apoptotic extracellular vesicles alleviate Pg‣PS induced inflammatory responses of macrophages via<br>AMPK/SIRT1/NFâ€₽B pathway and inhibit osteoclast formation. Journal of Periodontology, 2022, 93,<br>1738-1751.                                                         | 3.4  | 25        |
| 6  | Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Molecular Therapy, 2022, 30, 3193-3208.                                                                                                                        | 8.2  | 32        |
| 7  | Hybrid Biomaterial Initiates Refractory Wound Healing via Inducing Transiently Heightened<br>Inflammatory Responses. Advanced Science, 2022, 9, .                                                                                                                            | 11.2 | 20        |
| 8  | Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive Materials,<br>2021, 6, 666-683.                                                                                                                                                     | 15.6 | 139       |
| 9  | Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Science Advances, 2021, 7, .                                                                                      | 10.3 | 107       |
| 10 | Modular immune-homeostatic microparticles promote immune tolerance in mouse autoimmune models. Science Translational Medicine, 2021, 13, .                                                                                                                                   | 12.4 | 24        |
| 11 | Custom-Made Antibiotic Cement-Coated Nail for the Treatment of Infected Bone Defect. BioMed Research International, 2021, 2021, 1-12.                                                                                                                                        | 1.9  | 7         |
| 12 | Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. Journal of<br>Extracellular Vesicles, 2021, 10, e12109.                                                                                                                               | 12.2 | 90        |
| 13 | Multifunctional hierarchical nanohybrids perform triple antitumor theranostics in a cascaded manner for effective tumor treatment. Acta Biomaterialia, 2021, 128, 408-419.                                                                                                   | 8.3  | 9         |
| 14 | On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy. Biomaterials, 2021, 275, 120956.                                                                                                                                    | 11.4 | 37        |
| 15 | T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance. Bioactive Materials, 2021, 6, 3150-3163.                                                                                                             | 15.6 | 26        |
| 16 | Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Research and Therapy, 2020, 11, 507.                                                                                             | 5.5  | 85        |
| 17 | Chimeric apoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation. Science Advances, 2020, 6, eaba2987.                                                                                                                 | 10.3 | 86        |
| 18 | Induced membrane technique combined with antibiotic-loaded calcium sulfate–calcium phosphate<br>composite as bone graft expander for the treatment of large infected bone defects: preliminary<br>results of 12 cases. Annals of Translational Medicine, 2020, 8, 1081-1081. | 1.7  | 8         |

Sнıyu Liu

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nature Biomedical Engineering, 2020, 4, 1063-1075.                               | 22.5 | 161       |
| 20 | Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Proliferation, 2020, 53, e12830.                                                                         | 5.3  | 90        |
| 21 | Increased Expression of Sox9 during Balance of BMSCs/Chondrocyte Bricks in Platelet-Rich Plasma<br>Promotes Construction of a Stable 3-D Chondrogenesis Microenvironment for BMSCs. Stem Cells<br>International, 2020, 2020, 1-11.  | 2.5  | 5         |
| 22 | A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy. Biomaterials Science, 2020, 8, 1865-1874.                                                                               | 5.4  | 14        |
| 23 | Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 2020, 16, 2140-2155.                                                                                   | 9.1  | 96        |
| 24 | lonomycin ameliorates hypophosphatasia via rescuing alkaline phosphatase deficiency-mediated L-type<br>Ca2+ channel internalization in mesenchymal stem cells. Bone Research, 2020, 8, 19.                                          | 11.4 | 9         |
| 25 | The effect of calcium sulfate/calcium phosphate composite for the treatment of chronic osteomyelitis compared with calcium sulfate. Annals of Palliative Medicine, 2020, 9, 1821-1833.                                              | 1.2  | 13        |
| 26 | Stem cell-based bone and dental regeneration: a view of microenvironmental modulation.<br>International Journal of Oral Science, 2019, 11, 23.                                                                                      | 8.6  | 146       |
| 27 | Stimuliâ€Responsive Scaffold for Breast Cancer Treatment Combining Accurate Photothermal Therapy<br>and Adipose Tissue Regeneration. Advanced Functional Materials, 2019, 29, 1904401.                                              | 14.9 | 56        |
| 28 | A superparamagnetic Fe <sub>3</sub> O <sub>4</sub> –TiO <sub>2</sub> composite coating on titanium by micro-arc oxidation for percutaneous implants. Journal of Materials Chemistry B, 2019, 7, 5265-5276.                          | 5.8  | 27        |
| 29 | MSC-Derived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells<br>International, 2019, 2019, 1-16.                                                                                                   | 2.5  | 242       |
| 30 | Substrateâ€Independent Coating with Persistent and Stable Antifouling and Antibacterial Activities to Reduce Bacterial Infection for Various Implants. Advanced Healthcare Materials, 2019, 8, e1801423.                            | 7.6  | 34        |
| 31 | Fabrication of Self-Healing Hydrogels with On-Demand Antimicrobial Activity and Sustained<br>Biomolecule Release for Infected Skin Regeneration. ACS Applied Materials & Interfaces, 2018, 10,<br>17018-17027.                      | 8.0  | 150       |
| 32 | Activation of the Wnt/β-Catenin Pathway by an Inflammatory Microenvironment Affects the Myogenic<br>Differentiation Capacity of Human Laryngeal Mucosa Mesenchymal Stromal Cells. Stem Cells and<br>Development, 2018, 27, 771-782. | 2.1  | 6         |
| 33 | Immobilization of heparin on decellularized kidney scaffold to construct microenvironment for antithrombosis and inducing reendothelialization. Science China Life Sciences, 2018, 61, 1168-1177.                                   | 4.9  | 12        |
| 34 | Graphene Oxide Based Recyclable <i>in Vivo</i> Device for Amperometric Monitoring of Interferon-γ in<br>Inflammatory Mice. ACS Applied Materials & Interfaces, 2018, 10, 33078-33087.                                               | 8.0  | 25        |
| 35 | Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Research, 2018, 6, 27.                                                                              | 11.4 | 50        |
| 36 | Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia<br>via transferring multiple cellular factors. Cell Research, 2018, 28, 918-933.                                                  | 12.0 | 165       |

**S**нıyu Liu

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by<br>synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Research and<br>Therapy, 2018, 9, 88.   | 5.5  | 77        |
| 38 | Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth.<br>Science Translational Medicine, 2018, 10, .                                                                       | 12.4 | 300       |
| 39 | MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3. Cancer Letters, 2017, 397, 111-119.                                                                | 7.2  | 109       |
| 40 | Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect. Theranostics, 2017, 7, 4370-4382.                                                               | 10.0 | 50        |
| 41 | Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static<br>Mechanical Strain. Stem Cells International, 2017, 2017, 1-13.                                                          | 2.5  | 39        |
| 42 | Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell<br>sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research and Therapy, 2016, 7,<br>168. | 5.5  | 55        |
| 43 | Suppression of EZH2 Prevents the Shift of Osteoporotic MSC Fate to Adipocyte and Enhances Bone Formation During Osteoporosis. Molecular Therapy, 2016, 24, 217-229.                                                      | 8.2  | 126       |
| 44 | Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Scientific Reports, 2015, 5, 17036.                                                | 3.3  | 44        |
| 45 | MiR-26a Rescues Bone Regeneration Deficiency of Mesenchymal Stem Cells Derived From Osteoporotic<br>Mice. Molecular Therapy, 2015, 23, 1349-1357.                                                                        | 8.2  | 78        |
| 46 | MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell<br>Metabolism, 2015, 22, 606-618.                                                                                    | 16.2 | 195       |
| 47 | Mesenchymal Stem Cells Prevent Hypertrophic Scar Formation via Inflammatory Regulation when Undergoing Apoptosis. Journal of Investigative Dermatology, 2014, 134, 2648-2657.                                            | 0.7  | 124       |
| 48 | The promotion of bone regeneration through positive regulation ofÂangiogenic–osteogenic coupling<br>using microRNA-26a. Biomaterials, 2013, 34, 5048-5058.                                                               | 11.4 | 191       |
| 49 | Synergistic Angiogenesis Promoting Effects of Extracellular Matrix Scaffolds and Adipose-Derived<br>Stem Cells During Wound Repair. Tissue Engineering - Part A, 2011, 17, 725-739.                                      | 3.1  | 119       |