Tolga AytuÄŸ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1423510/publications.pdf

Version: 2024-02-01

17	768	11	17
papers	citations	h-index	g-index
18	18	18	1300
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Hermetically sealed porous-wall hollow microspheres enabled by monolithic glass coatings: Potential for thermal insulation applications. Vacuum, 2022, 195, 110667.	3 . 5	5
2	Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. Journal of Materials Science, 2022, 57, 8127-8138.	3.7	4
3	Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance. Carbohydrate Polymers, 2021, 256, 117525.	10.2	37
4	All-aerosol-jet-printed highly sensitive and selective polyaniline-based ammonia sensors: a route toward low-cost, low-power gas detection. Journal of Materials Science, 2021, 56, 12596-12606.	3.7	15
5	Copper–Carbon Nanotube Composites Enabled by Electrospinning for Advanced Conductors. ACS Applied Nano Materials, 2020, 3, 6863-6875.	5.0	15
6	Strong and Tough Cellulose Nanofibrils Composite Films: Mechanism of Synergetic Effect of Hydrogen Bonds and Ionic Interactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14341-14346.	6.7	44
7	Hierarchical TiO ₂ :Cu ₂ O Nanostructures for Gas/Vapor Sensing and CO ₂ Sequestration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48466-48475.	8.0	18
8	Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 11008-11017.	8.0	57
9	Irradiation performance of rare earth and nanoparticle enhanced high temperature superconducting films based on YBCO. Nuclear Materials and Energy, 2016, 9, 251-255.	1.3	7
10	Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8556-8561.	8.0	7
11	Superhydrophobic materials and coatings: a review. Reports on Progress in Physics, 2015, 78, 086501.	20.1	415
12	Monolithic graded-refractive-index glass-based antireflective coatings: broadband/omnidirectional light harvesting and self-cleaning characteristics. Journal of Materials Chemistry C, 2015, 3, 5440-5449.	5 . 5	55
13	Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO ₂ –Cu ₂ O thin films. Nanotechnology, 2014, 25, 245601.	2.6	14
14	Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films. Nanotechnology, 2013, 24, 315602.	2.6	47
15	Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics. Materials Research Bulletin, 2013, 48, 352-356.	5. 2	15
16	An evaluation of phase separated, self-assembled LaMnO ₃ -MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa ₂ Cu ₃ O ₇₋₁ coated conductors. Journal of Materials Research, 2010, 25, 437-443.	2.6	7
17	Properties of YBCO on \${m LaMnO}_{3}\$-Capped IBAD MgO-Templates Without Homo-Epitaxial MgO Layer. IEEE Transactions on Applied Superconductivity, 2009, 19, 3315-3318.	1.7	5