Changzhou Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1423331/publications.pdf

Version: 2024-02-01

41258 25716 12,134 131 49 108 citations h-index g-index papers 138 138 138 12356 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Subâ€nanoscale Engineering of MoO ₂ Clusters for Enhanced Sodium Storage. Energy and Environmental Materials, 2023, 6, .	7.3	34
2	Construction of conductive Niâ€Coâ€molybdate solidâ€solution nanoparticles encapsulated in carbon nanofibers towards Liâ€ion batteries as highâ€rate anodes. Electrochimica Acta, 2022, 402, 139564.	2.6	6
3	Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A, 2022, 10, 357-378.	5.2	34
4	Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Research, 2022, 15, 4068-4075.	5.8	43
5	Green self-activation engineering of metal–organic framework derived hollow nitrogen-doped carbon spheres towards supercapacitors. Journal of Materials Chemistry A, 2022, 10, 2932-2944.	5.2	24
6	Ultrasonic-Assisted Synthesis of N-Doped, Multicolor Carbon Dots toward Fluorescent Inks, Fluorescence Sensors, and Logic Gate Operations. Nanomaterials, 2022, 12, 312.	1.9	34
7	Singleâ€Crystal Nanoâ€Subunits Assembled Accordionâ€Shape WNb ₂ O ₈ Framework with High Ionic/Electronic Conductivities towards Liâ€Ion Capacitors. Small, 2022, 18, e2107987.	5.2	28
8	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
9	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
10	Formation of solidâ€solution <scp> Co _{<i>x</i>} Ni _{1â^² <i>x</i>} CO ₃ </scp> as highâ€performance anode materials for lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 9404-9413.	2.2	0
11	Metallic Mo ₂ C Quantum Dots Confined in Functional Carbon Nanofiber Films toward Efficient Sodium Storage: Heterogeneous Interface Engineering and Charge-Storage Mechanism. ACS Applied Energy Materials, 2022, 5, 1114-1125.	2.5	16
12	Efficient Lithium Storage of Siâ€Based Anode Enabled by a Dualâ€Component Protection Strategy. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	6
13	Efficient Activation Engineering from the Inside Out toward Hierarchically Porous Carbon Framework as Electrode Materials for Supercapacitors. ACS Applied Energy Materials, 2022, 5, 5719-5729.	2.5	6
14	Sodium tungsten bronze-supported Pt electrocatalysts for the high-performance hydrogen evolution reaction. Catalysis Science and Technology, 2022, 12, 4498-4510.	2.1	11
15	A Review of Metal Silicides for Lithium-Ion Battery Anode Application. Acta Metallurgica Sinica (English Letters), 2021, 34, 291-308.	1.5	24
16	Designing Hierarchical Porous ZnO/ZnFe 2 O 4 Hybrid Nanofibers with Robust Core/Shell Heterostructure as Competitive Anodes for Efficient Lithium Storage. Energy Technology, 2021, 9, 2000869.	1.8	6
17	Flexible MoO ₂ Nanocrystals@Nâ€doped Carbon Nanofibers Film as a Selfâ€Supporting Anode for Quasiâ€Solidâ€State Sodiumâ€Ion Batteries. Energy Technology, 2021, 9, .	1.8	11
18	Template-free formation of one-dimensional mesoporous ZnMn ₂ O ₄ tube-in-tube nanofibers towards lithium-ion batteries as anode materials. CrystEngComm, 2021, 23, 7228-7236.	1.3	6

#	Article	IF	Citations
19	Unveiling Intrinsic Potassium Storage Behaviors of Hierarchical Nano Bi@Nâ€Doped Carbon Nanocages Framework via In Situ Characterizations. Angewandte Chemie - International Edition, 2021, 60, 7180-7187.	7.2	132
20	Unveiling Intrinsic Potassium Storage Behaviors of Hierarchical Nano Bi@Nâ€Doped Carbon Nanocages Framework via In Situ Characterizations. Angewandte Chemie, 2021, 133, 7256-7263.	1.6	19
21	Construction and Operating Mechanism of Highâ€Rate Moâ€Doped Na ₃ V ₂ (PO ₄) ₃ @C Nanowires toward Practicable Wideâ€Temperatureâ€Tolerance Naâ€Ion and Hybrid Li/Naâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100287.	10.2	88
22	Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges. InformaÄnÃ-Materiály, 2021, 3, 1393-1421.	8.5	46
23	Rate Balance Design and Construction of a Conductive Ni _{0.5} Co _{0.5} MoO ₄ Solid-Solution Microspherical Superstructure toward Advanced Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9470-9478.	2.5	7
24	Organic–Inorganic Hybridization Engineering of Polyperylenediimide Cathodes for Efficient Potassium Storage. Angewandte Chemie - International Edition, 2021, 60, 23596-23601.	7.2	30
25	Organic–Inorganic Hybridization Engineering of Polyperylenediimide Cathodes for Efficient Potassium Storage. Angewandte Chemie, 2021, 133, 23788.	1.6	4
26	Rolled-up island-bridge (RIB): a new and general electrode configuration design for a wire-shaped stretchable micro-supercapacitor array. Journal of Materials Chemistry A, 2021, 9, 2899-2911.	5.2	25
27	Formation and operating mechanisms of single-crystalline perovskite NaNbO ₃ nanocubes/few-layered Nb ₂ CT _{<i>x</i>} MXene hybrids towards Li-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 20405-20416.	5.2	48
28	Magnetic Field Assisted Construction of Hollow Red P Nanospheres Confined in Hierarchical Nâ€Doped Carbon Nanosheets/Nanotubes 3D Framework for Efficient Potassium Storage. Advanced Energy Materials, 2021, 11, 2003429.	10.2	47
29	Recent Progress on In Situ/Operando Characterization of Rechargeable Alkali Ion Batteries. ChemPlusChem, 2021, 86, 1487-1496.	1.3	3
30	MOFs Derived Hetero-ZnO/Fe2O3 Nanoflowers with Enhanced Photocatalytic Performance towards Efficient Degradation of Organic Dyes. Nanomaterials, 2021, 11, 3239.	1.9	17
31	Polyvinylpyrrolidone gel based Pt/Ni(OH) ₂ heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 27061-27071.	5.2	24
32	Surface/Interface Structure Degradation of Niâ€Rich Layered Oxide Cathodes toward Lithiumâ€Ion Batteries: Fundamental Mechanisms and Remedying Strategies. Advanced Materials Interfaces, 2020, 7, 1901749.	1.9	134
33	An Aqueous Battery–Pseudocapacitor Hybrid Capacitor Based on Conductive Core–Shell NiCoSe 2 @Co 9 Se 8 Hollow Nanospheres Hybridized with Nanoscale Ru 0.41 In 0.59 O y. Energy Technology, 2020, 8, 1901319.	1.8	12
34	Biâ€Metal (Zn, Mn) Metal–Organic Framework–Derived ZnMnO 3 Microâ€Sheets Wrapped Uniformly with Polypyrrole Conductive Network toward Highâ€Performance Liâ€Ion Batteries. Energy Technology, 2020, 8, 1901218.	1.8	7
35	Construction of Hierarchical Nanotubes Assembled from Ultrathin V ₃ S ₄ @C Nanosheets towards Alkaliâ€on Batteries with Ionâ€Dependent Electrochemical Mechanisms. Angewandte Chemie, 2020, 132, 2494-2503.	1.6	18
36	Construction of Hierarchical Nanotubes Assembled from Ultrathin V ₃ S ₄ @C Nanosheets towards Alkaliâ€lon Batteries with Ionâ€Dependent Electrochemical Mechanisms. Angewandte Chemie - International Edition, 2020, 59, 2473-2482.	7.2	199

#	Article	IF	CITATIONS
37	Inâ€Plane Assembled Singleâ€Crystalline Tâ€Nb ₂ O ₅ Nanorods Derived from Fewâ€Layered Nb ₂ CT <i>>_x</i> MXene Nanosheets for Advanced Liâ€Ion Capacitors. Small Methods, 2020, 4, 2000630.	4.6	87
38	Polyacrylamide hydrogel-derived three-dimensional hierarchical porous N,S co-doped carbon frameworks for electrochemical capacitors. New Journal of Chemistry, 2020, 44, 21279-21287.	1.4	2
39	Lithium Storage: Efficient Laserâ€Induced Construction of Oxygenâ€Vacancy Abundant Nanoâ€ZnCo ₂ O ₄ /Porous Reduced Graphene Oxide Hybrids toward Exceptional Capacitive Lithium Storage (Small 32/2020). Small, 2020, 16, 2070179.	5.2	2
40	Template-free construction of hollow ZnFe ₂ O ₄ nanotubes coated with a nano-carbon layer as a competitive anode for Li-ion batteries. Nanoscale Advances, 2020, 2, 2284-2287.	2,2	3
41	Solid Solution Engineering of Co–Ni-Based Ternary Molybdate Nanorods toward Hybrid Supercapacitors and Lithium-Ion Batteries as High-Performance Electrodes. ACS Applied Energy Materials, 2020, 3, 3955-3965.	2.5	32
42	Facile Solvothermal Synthesis of Hollow BiOBr Submicrospheres with Enhanced Visible-Light-Responsive Photocatalytic Performance. Journal of Analytical Methods in Chemistry, 2020, 2020, 1-12.	0.7	6
43	Design and construction of bi-metal MOF-derived yolk–shell Ni ₂ P/ZnP ₂ hollow microspheres for efficient electrocatalytic oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 1366-1374.	3.2	37
44	Green Bio-template Fabrication of Fe Derivatives@Carbon Composites and Porous Carbon Sheets toward Advanced Li-lon Capacitors as Low-Cost Electrodes. ACS Applied Energy Materials, 2020, 3, 7159-7166.	2.5	8
45	Efficient Laserâ€Induced Construction of Oxygenâ€Vacancy Abundant Nanoâ€ZnCo ₂ O ₄ /Porous Reduced Graphene Oxide Hybrids toward Exceptional Capacitive Lithium Storage. Small, 2020, 16, e2001526.	5.2	48
46	Coordination polymer nanowires/reduced graphene oxide paper as flexible anode for sodium-ion batteries. Science China Materials, 2020, 63, 1966-1972.	3.5	10
47	High-yield and <i>in situ</i> fabrication of high-content nitrogen-doped graphene nanoribbons@Co/CoOOH as an integrated sulfur host towards Liâ€"S batteries. Journal of Materials Chemistry A, 2020, 8, 3048-3059.	5.2	32
48	Construction of a multi-dimensional flexible MnS based paper electrode with ultra-stable and high-rate capability towards efficient sodium storage. Nanoscale, 2020, 12, 4119-4127.	2.8	19
49	Conductive metalâ€organic frameworks: Recent advances in electrochemical energyâ€related applications and perspectives. , 2020, 2, 203-222.		7 5
50	Formation of Nanodimensional NiCoO ₂ Encapsulated in Porous Nitrogen-Doped Carbon Submicrospheres from a Bimetallic (Ni, Co) Organic Framework toward Efficient Lithium Storage. ACS Applied Materials & Diterfaces, 2019, 11, 32052-32061.	4.0	38
51	A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer Ti ₃ C ₂ T _x nanosheets with enhanced lithium storage for Li-ion batteries. Nanoscale, 2019, 11, 16755-16766.	2.8	35
52	Unusual formation of hollow NiCoO ₂ sub-microspheres by oxygen functional group dominated thermally induced mass relocation towards efficient lithium storage. Journal of Materials Chemistry A, 2019, 7, 18109-18117.	5.2	50
53	General and Scalable Fabrication of Core–Shell Metal Sulfides@C Anchored on 3D Nâ€Doped Foam toward Flexible Sodium Ion Batteries. Small, 2019, 15, e1903259.	5.2	62
54	Bottomâ€Up Fabrication of 1D Cuâ€based Conductive Metal–Organic Framework Nanowires as a Highâ€Rate Anode towards Efficient Lithium Storage. ChemSusChem, 2019, 12, 5051-5058.	3.6	73

#	Article	IF	Citations
55	Scalable Synthesis of Oneâ€Dimensional Mesoporous ZnMnO ₃ Nanorods with Ultraâ€Stable and High Rate Capability for Efficient Lithium Storage. Chemistry - A European Journal, 2019, 25, 16683-16691.	1.7	8
56	Recent progress in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4353-4382.	5.2	91
57	Hollow mesoporous hetero-ZnO/ZnMnO ₃ microspheres: template-free formation process and enhanced lithium storage capability towards Li-ion batteries as a competitive anode. Journal of Materials Chemistry A, 2019, 7, 3264-3277.	5.2	69
58	Oneâ€Dimensional Nanostructured Pseudocapacitive Materials: Design, Synthesis and Applications in Supercapacitors. Batteries and Supercaps, 2019, 2, 820-841.	2.4	92
59	Synthesis of ultralong ZnFe2O4@polypyrrole nanowires with enhanced electrochemical Li-storage behaviors for lithium-ion batteries. Electrochimica Acta, 2019, 306, 198-208.	2.6	54
60	Lithiumâ€ion Batteries: In Situ Synthesis of Hierarchical Core Doubleâ€Shell Tiâ€Doped LiMnPO 4 @NaTi 2 (PO) (Adv. Energy Mater. 11/2019). Advanced Energy Materials, 2019, 9, 1970033.	Tj ETQq0 (10 . 2	O 0 rgBT /Ov
61	Sodium-Ion Batteries: A Ternary Fe1â^' x S@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries (Adv. Energy Mater. 9/2019). Advanced Energy Materials, 2019, 9, 1970026.	10.2	9
62	Intrinsic lithium storage mechanisms and superior electrochemical behaviors of monodispersed hierarchical CoCO3 sub-microspheroids as a competitive anode towards Li-ion batteries. Electrochimica Acta, 2019, 307, 20-29.	2.6	28
63	Comparative investigations of high-rate NaCrO ₂ cathodes towards wide-temperature-tolerant pouch-type Na-ion batteries from â^15 to 55 °C: nanowires <i>vs.</i> Journal of Materials Chemistry A, 2019, 7, 11915-11927.	5.2	40
64	In Situ Synthesis of Hierarchical Core Doubleâ€6hell Tiâ€Doped LiMnPO ₄ @NaTi ₂ (PO ₄) ₃ @C/3D Graphene Cathode with Highâ€Rate Capability and Long Cycle Life for Lithiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1802847.	10.2	83
65	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Materials Horizons, 2019, 6, 871-910.	6.4	67
66	Conductive Co-based metal–organic framework nanowires: a competitive high-rate anode towards advanced Li-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 24788-24791.	5.2	53
67	Efficient electrospinning fabrication and the underlying formation mechanism of one-dimensional monoclinic Li ₂ FeSiO ₄ nanofibers. CrystEngComm, 2019, 21, 6340-6345.	1.3	4
68	Construction of 1D conductive Ni-MOF nanorods with fast Li ⁺ kinetic diffusion and stable high-rate capacities as an anode for lithium ion batteries. Nanoscale Advances, 2019, 1, 4688-4691.	2.2	42
69	A Ternary Fe _{1â^'} <i></i> >S@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803052.	10.2	189
70	A General Eco-friendly Production of Bio-sources Derived Micro-/Mesoporous Carbons with Robust Supercapacitive Behaviors and Sodium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 779-789.	3.2	44
71	Ultralong Layered NaCrO ₂ Nanowires: A Competitive Wide-Temperature-Operating Cathode for Extraordinary High-Rate Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4037-4046.	4.0	57
72	Spatially Selfâ€Confined Formation of Ultrafine NiCoO ₂ Nanoparticles@Ultralong Amorphous Nâ€Doped Carbon Nanofibers as an Anode towards Efficient Capacitive Li ⁺ Storage. Chemistry - A European Journal, 2019, 25, 863-873.	1.7	28

#	Article	IF	CITATIONS
73	Universal FeCl ₃ -Activating Strategy for Green and Scalable Fabrication of Sustainable Biomass-Derived Hierarchical Porous Nitrogen-Doped Carbons for Electrochemical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 548-557.	2.5	131
74	Supercapacitors: Monodisperse Metallic NiCoSe ₂ Hollow Subâ€Microspheres: Formation Process, Intrinsic Chargeâ€Storage Mechanism, and Appealing Pseudocapacitance as Highly Conductive Electrode for Electrochemical Supercapacitors (Adv. Funct. Mater. 13/2018). Advanced Functional Materials, 2018, 28, 1870082.	7.8	11
75	Foxtail millet-derived highly fluorescent multi-heteroatom doped carbon quantum dots towards fluorescent inks and smart nanosensors for selective ion detection. New Journal of Chemistry, 2018, 42, 7326-7331.	1.4	22
76	Monodisperse Metallic NiCoSe ₂ Hollow Subâ€Microspheres: Formation Process, Intrinsic Chargeâ€Storage Mechanism, and Appealing Pseudocapacitance as Highly Conductive Electrode for Electrochemical Supercapacitors. Advanced Functional Materials, 2018, 28, 1705921.	7.8	214
77	Nasicon-Type Surface Functional Modification in Core–Shell LiNi⟨sub⟩0.5⟨ sub⟩Mn⟨sub⟩0.3⟨ sub⟩Co⟨sub⟩0.2⟨ sub⟩O⟨sub⟩2⟨ sub⟩@NaTi⟨sub⟩2⟨ sub⟩2⟨ sub⟩(PO⟨sub⟩4⟨ sub⟩Cathode Enhances Its High-Voltage Cycling Stability and Rate Capacity toward Li-lon Batteries. ACS Applied Materials & App), _{3< 4.0}	/sub>
78	Green and Facile Synthesis of Nitrogen and Phosphorus Co-Doped Carbon Quantum Dots towards Fluorescent Ink and Sensing Applications. Nanomaterials, 2018, 8, 386.	1.9	76
79	Structure-designed synthesis of yolk–shell hollow ZnFe ₂ O ₄ /C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17947-17958.	5.2	48
80	Uniform Hollow Mesoporous Nickel Cobalt Sulfide Microdumbbells: A Competitive Electrode with Exceptional Gravimetric/Volumetric Pseudocapacitance for Highâ€Energyâ€Density Hybrid Superapacitors. Advanced Electronic Materials, 2017, 3, 1600322.	2.6	38
81	Supercapacitors: Uniform Hollow Mesoporous Nickel Cobalt Sulfide Microdumbbells: A Competitive Electrode with Exceptional Gravimetric/Volumetric Pseudocapacitance for Highâ€Energyâ€Density Hybrid Superapacitors (Adv. Electron. Mater. 2/2017). Advanced Electronic Materials, 2017, 3, .	2.6	O
82	Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9443-9464.	5.2	278
83	Surâ€/Interface Engineering of Hierarchical LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ @LiCoPO ₄ @Graphene Architectures as Promising Highâ€Voltage Cathodes toward Advanced Liâ€Ion Batteries. Advanced Materials Interfaces, 2017, 4, 1700382.	1.9	38
84	Cathode Materials: Surâ€/Interface Engineering of Hierarchical LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ @LiCoPO ₄ @Graphene Architectures as Promising Highâ€Voltage Cathodes toward Advanced Liâ€Ion Batteries (Adv. Mater.) Tj ETQq0 0 0	O ¹ rgBT /Ov	erlock 10 T
85	Hollow mesoporous hetero-NiCo ₂ S ₄ /Co ₉ S ₈ submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 133-144.	5. 2	249
86	Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries. Nanomaterials, 2017, 7, 325.	1.9	41
87	Anionâ€Exchange Formation of Hollow NiCo ₂ S ₄ Nanoboxes from Mesocrystalline Nickel Cobalt Carbonate Nanocubes towards Enhanced Pseudocapacitive Properties. ChemPlusChem, 2016, 81, 557-563.	1.3	76
88	A shiitake-derived nitrogen/oxygen/phosphorus co-doped carbon framework with hierarchical tri-modal porosity for high-performance electrochemical capacitors. RSC Advances, 2016, 6, 81527-81533.	1.7	12
89	Self-sacrifice Template Formation of Hollow Hetero-Ni7S6/Co3S4 Nanoboxes with Intriguing Pseudo-capacitance for High-performance Electrochemical Capacitors. Scientific Reports, 2016, 6, 20973.	1.6	89
90	Lignite-derived mesoporous N- and O-enriched carbon sheet: a low-cost promising electrode for high-performance electrochemical capacitors. Journal of Solid State Electrochemistry, 2016, 20, 713-723.	1.2	17

#	Article	IF	CITATIONS
91	Self-sacrificial template formation of ultrathin single-crystalline ZnMn ₂ O ₄ nanoplates with enhanced Li-storage behaviors for Li-ion batteries. RSC Advances, 2016, 6, 2024-2027.	1.7	20
92	Hierarchical sulfur-impregnated hydrogenated TiO ₂ mesoporous spheres comprising anatase nanosheets with highly exposed (001) facets for advanced Li-S batteries. Nanotechnology, 2016, 27, 045403.	1.3	40
93	Green Templateâ€Free Synthesis of Hierarchical Shuttleâ€Shaped Mesoporous ZnFe ₂ O ₄ Microrods with Enhanced Lithium Storage for Advanced Liâ€ion Batteries. Chemistry - A European Journal, 2015, 21, 13012-13019.	1.7	55
94	Hierarchical Porous ZnMn ₂ O ₄ Hollow Nanotubes with Enhanced Lithium Storage toward Lithium″on Batteries. Chemistry - A European Journal, 2015, 21, 10771-10777.	1.7	86
95	Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2O4Microrods with Enhanced Lithium Storage for Advanced Li-lon Batteries. Chemistry - A European Journal, 2015, 21, 12817-12817.	1.7	0
96	Ultrafast spray pyrolysis fabrication of a nanophase ZnMn ₂ O ₄ anode towards high-performance Li-ion batteries. RSC Advances, 2015, 5, 13667-13673.	1.7	20
97	A core–shell TiO ₂ @C nano-architecture: facile synthesis, enhanced visible photocatalytic performance and electrochemical capacitance. RSC Advances, 2015, 5, 62424-62432.	1.7	12
98	Heterostructured core–shell ZnMn ₂ O ₄ nanosheets@carbon nanotubes' coaxial nanocables: a competitive anode towards high-performance Li-ion batteries. Nanotechnology, 2015, 26, 145401.	1.3	55
99	Surfactant-assisted hydrothermal synthesis of ultrafine CoMoO $<$ sub $>4sub>\hat{A}·0.9H<sub>2sub>0 nanorods towards high-performance supercapacitors. New Journal of Chemistry, 2015, 39, 5507-5512.$	1.4	18
100	Hydrothermal synthesis of visible-light-driven hierarchical Bi3.84W0.16O6.24 photocatalysts toward efficient degradation of methyl orange. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	7
101	Core–shell ZnO/ZnFe ₂ O ₄ @C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 20389-20398.	5.2	77
102	Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chemistry, 2015, 17, 2373-2382.	4.6	252
103	Selfâ€Sacrifice Template Fabrication of Hierarchical Mesoporous Biâ€Componentâ€Active ZnO/ZnFe ₂ O ₄ Subâ€Microcubes as Superior Anode Towards Highâ€Performance Lithiumâ€Ion Battery. Advanced Functional Materials, 2015, 25, 238-246.	7.8	334
104	Scalable Roomâ€Temperature Synthesis of Mesoporous Nanocrystalline ZnMn ₂ O ₄ with Enhanced Lithium Storage Properties for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2015, 21, 1262-1268.	1.7	62
105	Mixed Transitionâ€Metal Oxides: Design, Synthesis, and Energyâ€Related Applications. Angewandte Chemie - International Edition, 2014, 53, 1488-1504.	7.2	2,019
106	Templateâ€Free Fabrication of Mesoporous Hollow ZnMn ₂ O ₄ Subâ€microspheres with Enhanced Lithium Storage Capability towards Highâ€Performance Liâ€Ion Batteries. Particle and Particle Systems Characterization, 2014, 31, 657-663.	1,2	68
107	Green interfacial synthesis of two-dimensional poly(2,5-dimethoxyaniline) nanosheets as a promising electrode for high performance electrochemical capacitors. RSC Advances, 2014, 4, 24773-24776.	1.7	12
108	Rapid low-temperature synthesis of mesoporous nanophase ZnFe ₂ O ₄ with enhanced lithium storage properties for Li-ion batteries. RSC Advances, 2014, 4, 49212-49218.	1.7	50

#	Article	IF	CITATIONS
109	One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets–reduced graphene oxide for electrochemical capacitors. RSC Advances, 2014, 4, 14408-14413.	1.7	71
110	Green Templateâ€Free Synthesis of Mesoporous Ternary CoNi–Mn Oxide Nanowires Towards Highâ€Performance Electrochemical Capacitors. Particle and Particle Systems Characterization, 2014, 31, 778-787.	1,2	38
111	Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Advances, 2013, 3, 18573.	1.7	118
112	Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 11145.	5.2	160
113	Morphology-controlled fabrication of hierarchical mesoporous NiCo2O4 micro-/nanostructures and their intriguing application in electrochemical capacitors. RSC Advances, 2013, 3, 23709.	1.7	19
114	Facile synthesis of Co2P2O7 nanorods as a promising pseudocapacitive material towards high-performance electrochemical capacitors. RSC Advances, 2013, 3, 21558.	1.7	44
115	Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co ₃ O ₄ Hollow Nanoparticles as Selfâ€upported Electrodes for Electrochemical Capacitors. Advanced Functional Materials, 2013, 23, 3909-3915.	7.8	233
116	FACILE SYNTHESIS AND UNUSUAL ELECTROCHEMICAL CAPACITANCE OF Ni-DOPED TITANATE NANOTUBES. Journal of Molecular and Engineering Materials, 2013, 01, 1340016.	0.9	0
117	Capacitors: Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co ₃ O ₄ Hollow Nanoparticles as Selfâ€upported Electrodes for Electrochemical Capacitors (Adv. Funct. Mater. 31/2013). Advanced Functional Materials, 2013, 23, 3944-3944.	7.8	3
118	Microwave-assisted interfacial hydrothermal fabrication of hydrophobic CdWO ₄ microspheres as a high-performance photocatalyst. RSC Advances, 2013, 4, 2374-2381.	1.7	19
119	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials, 2012, 22, 4592-4597.	7.8	1,545
120	Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. Journal of Materials Chemistry, 2012, 22, 16084.	6.7	241
121	Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy and Environmental Science, 2012, 5, 7883.	15.6	780
122	Flexible Hybrid Paper Made of Monolayer Co ₃ O ₄ Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Advanced Functional Materials, 2012, 22, 2560-2566.	7.8	362
123	Synthesis and supercapacitance of flower-like Co(OH)2 hierarchical superstructures self-assembled by mesoporous nanobelts. Journal of Solid State Electrochemistry, 2012, 16, 1519-1525.	1.2	21
124	Biomolecule-assisted hydrothermal approach towards synthesis of ultra-thin nanoporous α-Co(OH)2 mesocrystal nanosheets for electrochemical capacitors. CrystEngComm, 2011, 13, 6130.	1.3	27
125	Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors. Journal of Materials Chemistry, 2011, 21, 16035.	6.7	96
126	Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Advances, 2011, 1, 1521.	1.7	73

#	Article	IF	CITATIONS
127	In situ growth of Li ₄ Ti ₅ O ₁₂ on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 761-767.	6.7	182
128	Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry, 2011, 21, 18183.	6.7	88
129	Synthesis of Ru0.58In0.42Oyâ«nH2O nanoparticles dispersed onto poly(sodium-4-styrene) Tj ETQq1 1 0.78431 capacitors. Journal of Colloid and Interface Science, 2011, 354, 804-809.	4 rgBT /0 5.0	Overlock 10 T 6
130	Interface-hydrothermal synthesis and electrochemical properties of CoSx nanodots/poly(sodium-4-styrene sulfonate) functionalized multi-walled carbon nanotubes nanocomposite. Journal of Colloid and Interface Science, 2010, 349, 181-185.	5.0	29
131	Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors. Journal of Materials Chemistry, 2010, 20, 10809.	6.7	115