
Najib M El-Sayed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1422897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome of the African Trypanosome Trypanosoma brucei. Science, 2005, 309, 416-422.	6.0	1,496
2	The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science, 2005, 309, 409-415.	6.0	1,273
3	The genome of the blood fluke Schistosoma mansoni. Nature, 2009, 460, 352-358.	13.7	945
4	The genome of the protist parasite Entamoeba histolytica. Nature, 2005, 433, 865-868.	13.7	783
5	Comparative Genomics of Trypanosomatid Parasitic Protozoa. Science, 2005, 309, 404-409.	6.0	713
6	Draft Genome of the Filarial Nematode Parasite <i>Brugia malayi</i> . Science, 2007, 317, 1756-1760.	6.0	571
7	The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of <i>Mycobacterium tuberculosis</i> . MBio, 2017, 8, .	1.8	185
8	Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathogens, 2016, 12, e1005511.	2.1	157
9	cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Molecular and Biochemical Parasitology, 1995, 73, 75-90.	0.5	118
10	Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes. Scientific Reports, 2015, 5, 9838.	1.6	114
11	Multiple mechanisms of immune evasion by African trypanosomes. Molecular and Biochemical Parasitology, 1998, 91, 51-66.	0.5	111
12	Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Research, 2009, 37, 3407-3417.	6.5	111
13	Dual Transcriptome Profiling of <i>Leishmania</i> -Infected Human Macrophages Reveals Distinct Reprogramming Signatures. MBio, 2016, 7, .	1.8	111
14	Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics, 2015, 16, 1108.	1.2	105
15	Gene synteny and evolution of genome architecture in trypanosomatids. Molecular and Biochemical Parasitology, 2004, 134, 183-191.	0.5	92
16	The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery. BMC Genomics, 2010, 11, 228.	1.2	92
17	Members of a Large Retroposon Family Are Determinants of Post-Transcriptional Gene Expression in Leishmania. PLoS Pathogens, 2007, 3, e136.	2.1	87
18	The Transcriptome of <i>Leishmania major</i> Developmental Stages in Their Natural Sand Fly Vector. MBio, 2017, 8, .	1.8	86

#	Article	IF	CITATIONS
19	The African trypanosome genome. International Journal for Parasitology, 2000, 30, 329-345.	1.3	84
20	Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions. Journal of Proteome Research, 2018, 17, 486-498.	1.8	84
21	Genetic nomenclature for Trypanosoma and Leishmania. Molecular and Biochemical Parasitology, 1998, 97, 221-224.	0.5	83
22	A New, Expressed Multigene Family Containing a Hot Spot for Insertion of Retroelements Is Associated with Polymorphic Subtelomeric Regions of Trypanosoma brucei. Eukaryotic Cell, 2002, 1, 137-151.	3.4	82
23	Transcriptomic profiling of gene expression and RNA processing during <i>Leishmania major</i> differentiation. Nucleic Acids Research, 2015, 43, 6799-6813.	6.5	77
24	Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion. PLoS Neglected Tropical Diseases, 2016, 10, e0004992.	1.3	71
25	Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics, 2006, 7, 60.	1.2	69
26	Identification of Schistosoma mansoni microRNAs. BMC Genomics, 2011, 12, 47.	1.2	62
27	Advances in schistosome genomics. Trends in Parasitology, 2004, 20, 154-157.	1.5	61
28	Analysis of stage-specific gene expression in the bloodstream and the procyclic form of Trypanosoma brucei using a genomic DNA-microarray. Molecular and Biochemical Parasitology, 2002, 123, 115-123.	0.5	60
29	African Trypanosomes Have Differentially Expressed Genes Encoding Homologues of the Leishmania GP63 Surface Protease. Journal of Biological Chemistry, 1997, 272, 26742-26748.	1.6	59
30	The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Research, 2003, 31, 4856-4863.	6.5	59
31	Identification of immediate response genes dominantly expressed in juvenile resistant and susceptible Biomphalaria glabrata snails upon exposure to Schistosoma mansoni. Molecular and Biochemical Parasitology, 2010, 169, 27-39.	0.5	59
32	Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. Insect Molecular Biology, 2006, 15, 411-424.	1.0	58
33	Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Neglected Tropical Diseases, 2019, 13, e0007152.	1.3	58
34	Schistosoma mansoni genome project: an update. Parasitology International, 2004, 53, 183-192.	0.6	56
35	Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environmental Microbiology, 2005, 7, 789-797.	1.8	56
36	The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Research, 2005, 33, 6688-6693.	6.5	56

#	Article	IF	CITATIONS
37	The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling. Journal of Leukocyte Biology, 2015, 98, 395-407.	1.5	55
38	Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. Nature Chemical Biology, 2019, 15, 463-471.	3.9	53
39	Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathogens, 2017, 13, e1006767.	2.1	52
40	More surprises from Kinetoplastida. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2579-2581.	3.3	51
41	Promoter architecture and response to a positive regulator of archaeal transcription. Molecular Microbiology, 2005, 56, 625-637.	1.2	49
42	Telomere and subtelomere of Trypanosoma cruzi chromosomes are enriched in (pseudo)genes of retrotransposon hot spot and trans-sialidase-like gene families: the origins of T. cruzi telomeres. Gene, 2005, 346, 153-161.	1.0	47
43	Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2008, 157, 65-72.	0.5	47
44	Assessing Student Understanding of Host Pathogen Interactions Using a Concept Inventory. Journal of Microbiology and Biology Education, 2009, 10, 43-50.	0.5	47
45	The Expression of a Plant-type Ferredoxin Redox System provides Molecular Evidence for a Plastid in the Early Dinoflagellate Perkinsus marinus. Protist, 2007, 158, 119-130.	0.6	46
46	Schistosoma mansoni (Platyhelminthes, Trematoda) nuclear receptors: Sixteen new members and a novel subfamily. Gene, 2006, 366, 303-315.	1.0	44
47	A Model for Using a Concept Inventory as a Tool for Students' Assessment and Faculty Professional Development. CBE Life Sciences Education, 2010, 9, 408-416.	1.1	44
48	A survey of the Trypanosoma brucei rhodesiense genome using shotgun sequencing1Note: Nucleotide sequence data reported in this paper are available in the GenBankâ,,⊄ dbEST and dbGSS databases under accession numbers N45733-N45918 and W88248-W88251 for expressed sequence tags, and B07182-B07505 for genome survey sequences.1. Molecular and Biochemical Parasitology, 1997, 84, 167-178.	0.5	42
49	Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathogens, 2017, 13, e1006584.	2.1	42
50	Identification of non-autonomous non-LTR retrotransposons in the genome of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2002, 124, 73-78.	0.5	41
51	Molecular Characterization of Serine-, Alanine-, and Proline-Rich Proteins of Trypanosoma cruzi and Their Possible Role in Host Cell Infection. Infection and Immunity, 2006, 74, 1537-1546.	1.0	41
52	Schistosoma mansoni genome: Closing in on a final gene set. Experimental Parasitology, 2007, 117, 225-228.	0.5	41
53	Microarray analysis of gene expression induced by sexual contact in Schistosoma mansoni. BMC Genomics, 2007, 8, 181.	1.2	37
54	Trypanosoma cruzi: RNA structure and post-transcriptional control of tubulin gene expression. Experimental Parasitology, 2002, 102, 123-133.	0.5	34

#	Article	IF	CITATIONS
55	Role of transposable elements in trypanosomatids. Microbes and Infection, 2008, 10, 575-581.	1.0	34
56	Glucose Levels Alter the Mga Virulence Regulon in the Group A Streptococcus. Scientific Reports, 2018, 8, 4971.	1.6	33
57	Genome-Wide Analysis Reveals Novel Genes Essential for Heme Homeostasis in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001044.	1.5	32
58	Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Molecular and Biochemical Parasitology, 2006, 145, 158-170.	0.5	31
59	The ingi and RIME non-LTR Retrotransposons Are Not Randomly Distributed in the Genome of Trypanosoma brucei. Molecular Biology and Evolution, 2003, 21, 520-528.	3.5	30
60	Identification of Zinc-Dependent Mechanisms Used by Group B <i>Streptococcus</i> To Overcome Calprotectin-Mediated Stress. MBio, 2020, 11, .	1.8	30
61	<i>Mycobacterium tuberculosis</i> Inhibits Autocrine Type I IFN Signaling to Increase Intracellular Survival. Journal of Immunology, 2019, 202, 2348-2359.	0.4	29
62	The Trypanosoma cruzi L1Tc and NARTc Non-LTR Retrotransposons Show Relative Site Specificity for Insertion. Molecular Biology and Evolution, 2006, 23, 411-420.	3.5	25
63	Comparative Transcriptome Profiling of Human Foreskin Fibroblasts Infected with the Sylvio and Y Strains of Trypanosoma cruzi. PLoS ONE, 2016, 11, e0159197.	1.1	25
64	The <i>fruRBA</i> Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infection and Immunity, 2016, 84, 1016-1031.	1.0	23
65	Transcript Expression Analysis of Putative Trypanosoma brucei GPI-Anchored Surface Proteins during Development in the Tsetse and Mammalian Hosts. PLoS Neglected Tropical Diseases, 2012, 6, e1708.	1.3	22
66	Functional genomics of trypanosomatids. Parasite Immunology, 2012, 34, 72-79.	0.7	22
67	Analysis of a donor gene region for a variant surface glycoprotein and its expression site in African trypanosomes. Nucleic Acids Research, 2001, 29, 2012-2019.	6.5	21
68	<i>Plasmodium falciparum</i> merozoite surface protein 1 blocks the proinflammatory protein S100P. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5429-5434.	3.3	20
69	The transition of M-CSF–derived human macrophages to a growth-promoting phenotype. Blood Advances, 2020, 4, 5460-5472.	2.5	17
70	Differential Expression of the Expression Site-associated Gene I Family in African Trypanosomes. Journal of Biological Chemistry, 1996, 271, 9771-9777.	1.6	15
71	New Trypanosoma cruzi Repeated Element That Shows Site Specificity for Insertion. Eukaryotic Cell, 2007, 6, 1228-1238.	3.4	15
72	A <i>Trypanosoma cruzi</i> zinc finger protein that is implicated in the control of epimastigote-specific gene expression and metacyclogenesis. Parasitology, 2021, 148, 1171-1185.	0.7	12

#	Article	IF	CITATIONS
73	Cofactor-independent phosphoglycerate mutase is an essential gene in procyclic form Trypanosoma brucei. Parasitology Research, 2007, 100, 887-892.	0.6	11
74	Schistosoma mansoni: Microarray analysis of gene expression induced by host sex. Experimental Parasitology, 2008, 120, 357-363.	0.5	11
75	Genomic Analysis of Sequence-Dependent DNA Curvature in Leishmania. PLoS ONE, 2013, 8, e63068.	1.1	11
76	Gene expression network analyses during infection with virulent and avirulent Trypanosoma cruziÂstrains unveil a role for fibroblasts in neutrophil recruitment and activation. PLoS Pathogens, 2020, 16, e1008781.	2.1	9
77	Immune Complex–Driven Generation of Human Macrophages with Anti-Inflammatory and Growth-Promoting Activity. Journal of Immunology, 2020, 205, 102-112.	0.4	9
78	Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. MBio, 2022, 13, .	1.8	9
79	Using a Concept Inventory to Reveal Student Thinking Associated with Common Misconceptions about Antibiotic Resistance. Journal of Microbiology and Biology Education, 2017, 18, .	0.5	8
80	The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes. Infection and Immunity, 2017, 85, .	1.0	6
81	PIWI silencing mechanism involving the retrotransposon nimbus orchestrates resistance to infection with Schistosoma mansoni in the snail vector, Biomphalaria glabrata. PLoS Neglected Tropical Diseases, 2021, 15, e0009094.	1.3	6
82	The Genome and Its Implications. Advances in Parasitology, 2011, 75, 209-230.	1.4	4
83	Intrinsic DNA curvature in trypanosomes. BMC Research Notes, 2017, 10, 585.	0.6	3
84	Early Leukocyte Responses in Ex-Vivo Models of Healing and Non-Healing Human Leishmania (Viannia) panamensis Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 687607.	1.8	2
85	Crystallization and preliminary X-ray investigation of the recombinantTrypanosoma brucei rhodesiense calmodulin. Proteins: Structure, Function and Bioinformatics, 1995, 21, 354-357.	1.5	1
86	Sequencing Strategies for Parasite Genomes. , 2004, 270, 001-016.		1
87	The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Research, 2006, 34, 764-764.	6.5	1
88	Genetics of Trypanosoma cruzi. , 2010, , 433-457.		1
89	Virulence-Related Genes Identified from the Genome Sequence of the Non-O1/Non-O139 Vibrio cholerae Strain VcN1, Isolated from Dhaka, Bangladesh. Genome Announcements, 2018, 6, .	0.8	0
90	Draft Genome Sequence of Pseudomonas aeruginosa Strain PA14-UM. Microbiology Resource Announcements, 2020, 9, .	0.3	0

#	Article	IF	CITATIONS
91	Physiological magnesium concentrations increase fidelity of diverse reverse transcriptases from HIV-1, HIV-2, and foamy virus, but not MuLV or AMV. Journal of General Virology, 2021, 102, .	1.3	0