Bruno C Lemaître

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1422819/publications.pdf

Version: 2024-02-01

178 papers 30,706 citations

79 h-index 167 g-index

209 all docs

209 docs citations

209 times ranked 16938 citing authors

#	Article	IF	CITATIONS
1	The Dorsoventral Regulatory Gene Cassette spÃtele/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell, 1996, 86, 973-983.	28.9	3,377
2	The Host Defense of <i>Drosophila melanogaster</i> . Annual Review of Immunology, 2007, 25, 697-743.	21.8	2,854
3	Comparative Genomics of the Eukaryotes. Science, 2000, 287, 2204-2215.	12.6	1,573
4	<i>Drosophila</i> host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14614-14619.	7.1	903
5	The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO Journal, 2002, 21, 2568-2579.	7.8	7 54
6	Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation. Cell Host and Microbe, 2009, 5, 200-211.	11.0	740
7	Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12590-12595.	7.1	657
8	Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in <i>Drosophila</i> . Genes and Development, 2009, 23, 2333-2344.	5.9	638
9	A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9465-9469.	7.1	558
10	The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunology, 2003, 4, 478-484.	14.5	533
11	Tissue-Specific Inducible Expression of Antimicrobial Peptide Genes in Drosophila Surface Epithelia. Immunity, 2000, 13, 737-748.	14.3	516
12	Toll-like receptors â€" taking an evolutionary approach. Nature Reviews Genetics, 2008, 9, 165-178.	16.3	486
13	Gut-associated microbes of Drosophila melanogaster. Gut Microbes, 2012, 3, 307-321.	9.8	459
14	The Drosophila Amidase PGRP-LB Modulates the Immune Response to Bacterial Infection. Immunity, 2006, 24, 463-473.	14.3	423
15	Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila. Cell Reports, 2013, 3, 1725-1738.	6.4	421
16	Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nature Reviews Microbiology, 2013, 11, 615-626.	28.6	409
17	<i>Drosophila</i> host defense after oral infection by an entomopathogenic <i>Pseudomonas</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11414-11419.	7.1	399
18	The Digestive Tract of <i>Drosophila melanogaster</i> . Annual Review of Genetics, 2013, 47, 377-404.	7.6	365

#	Article	IF	CITATIONS
19	The Drosophila caspase Dredd is required to resist Gramâ€negative bacterial infection. EMBO Reports, 2000, 1, 353-358.	4.5	363
20	Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology. MBio, 2014, 5, e01117-14.	4.1	360
21	A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO Journal, 1998, 17, 1217-1227.	7.8	336
22	DrosophilaEGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biology, 2010, 8, 152.	3.8	331
23	How Drosophila combats microbial infection: a model to study innate immunity and host–pathogen interactions. Current Opinion in Microbiology, 2002, 5, 102-110.	5.1	314
24	The phytopathogenic bacteria <i>Erwinia carotovora</i> infects <i>Drosophila</i> and activates an immune response. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3376-3381.	7.1	309
25	An Immune-Responsive Serpin Regulates the Melanization Cascade in Drosophila. Developmental Cell, 2002, 3, 581-592.	7.0	305
26	Anatomy and Physiology of the Digestive Tract of <i>Drosophila melanogaster</i> . Genetics, 2018, 210, 357-396.	2.9	304
27	Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in <i>Drosophila melanogaster</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15966-15971.	7.1	275
28	Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes and Development, 2001, 15, 1900-1912.	5.9	266
29	A SpÃæle-Processing Enzyme Required for Toll Signaling Activation in Drosophila Innate Immunity. Developmental Cell, 2006, 10, 45-55.	7.0	264
30	Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, 2008, 6, 302-313.	28.6	264
31	Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 2006, 24, 673-679.	17.5	261
32	Negative Regulation by Amidase PGRPs Shapes the Drosophila Antibacterial Response and Protects the Fly from Innocuous Infection. Immunity, 2011, 35, 770-779.	14.3	258
33	Gram-negative Bacteria-binding Protein, a Pattern Recognition Receptor for Lipopolysaccharide and \hat{l}^2 -1,3-Glucan That Mediates the Signaling for the Induction of Innate Immune Genes in Drosophila melanogaster Cells. Journal of Biological Chemistry, 2000, 275, 32721-32727.	3.4	256
34	Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLoS Pathogens, 2014, 10, e1004067.	4.7	246
35	Prevalence of Local Immune Response against Oral Infection in a Drosophila/Pseudomonas Infection Model. PLoS Pathogens, 2006, 2, e56.	4.7	224
36	PIMS Modulates Immune Tolerance by Negatively Regulating Drosophila Innate Immune Signaling. Cell Host and Microbe, 2008, 4, 147-158.	11.0	224

#	Article	IF	Citations
37	Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila EMBO Journal, 1995, 14, 536-545.	7.8	222
38	Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO Journal, 2005, 24, 3423-3434.	7.8	197
39	The road to Toll. Nature Reviews Immunology, 2004, 4, 521-527.	22.7	196
40	Drosophila Immunity: A Large-Scale In Vivo RNAi Screen Identifies Five Serine Proteases Required for Toll Activation. Current Biology, 2006, 16, 808-813.	3.9	189
41	Infection-Induced Host Translational Blockage Inhibits Immune Responses and Epithelial Renewal in the Drosophila Gut. Cell Host and Microbe, 2012, 12, 60-70.	11.0	182
42	A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO Journal, 1999, 18, 3380-3391.	7.8	181
43	Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient <i>Drosophila</i> mutants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2152-2157.	7.1	181
44	A single modular serine protease integrates signals from pattern-recognition receptors upstream of the <i>Drosophila</i> Toll pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12442-12447.	7.1	175
45	Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila. Journal of Biological Chemistry, 2006, 281, 28097-28104.	3.4	173
46	Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. ELife, 2019, 8, .	6.0	173
47	Inducible Expression of Double-Stranded RNA Reveals a Role for dFADD in the Regulation of the Antibacterial Response in Drosophila Adults. Current Biology, 2002, 12, 996-1000.	3.9	169
48	Antimicrobial peptide defense inDrosophila. BioEssays, 1997, 19, 1019-1026.	2.5	167
49	Microbiota-Derived Lactate Activates Production of Reactive Oxygen Species by the Intestinal NADPH Oxidase Nox and Shortens Drosophila Lifespan. Immunity, 2018, 49, 929-942.e5.	14.3	154
50	Genes that fight infection:what the Drosophila genome says about animal immunity. Trends in Genetics, 2000, 16, 442-449.	6.7	149
51	Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biology, 2015, 13, 81.	3.8	146
52	Drosophila immunity: two paths to NF-κB. Trends in Immunology, 2001, 22, 260-264.	6.8	145
53	Peptidoglycan Molecular Requirements Allowing Detection by the <i>Drosophila</i> Immune Deficiency Pathway. Journal of Immunology, 2004, 173, 7339-7348.	0.8	141
54	New insights on Drosophila antimicrobial peptide function in host defense and beyond. Current Opinion in Immunology, 2020, 62, 22-30.	5.5	140

#	Article	IF	CITATIONS
55	Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component. Journal of Biological Chemistry, 2009, 284, 19474-19481.	3.4	138
56	In Vivo RNA Interference Analysis Reveals an Unexpected Role for GNBP1 in the Defense against Gram-positive Bacterial Infection in Drosophila Adults. Journal of Biological Chemistry, 2004, 279, 12848-12853.	3.4	137
57	Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division. Journal of Cell Science, 2012, 125, 5944-5949.	2.0	127
58	Tissue- and Ligand-Specific Sensing of Gram-Negative Infection in <i>Drosophila</i> by PGRP-LC Isoforms and PGRP-LE. Journal of Immunology, 2012, 189, 1886-1897.	0.8	125
59	The Drosophila Inhibitor of Apoptosis Protein DIAP2 Functions in Innate Immunity and Is Essential To Resist Gram-Negative Bacterial Infection. Molecular and Cellular Biology, 2006, 26, 7821-7831.	2.3	121
60	Association of Hemolytic Activity of (i) Pseudomonas entomophila (i), a Versatile Soil Bacterium, with Cyclic Lipopeptide Production. Applied and Environmental Microbiology, 2010, 76, 910-921.	3.1	121
61	Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. Journal of Molecular Biology, 1998, 278, 515-527.	4.2	120
62	The dual oxidase gene <i>BdDuox</i> regulates the intestinal bacterial community homeostasis of <i>Bactrocera dorsalis</i> ISME Journal, 2016, 10, 1037-1050.	9.8	118
63	Methods to study Drosophila immunity. Methods, 2014, 68, 116-128.	3.8	117
64	Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. PLoS Genetics, 2016, 12, e1006089.	3.5	117
65	Genetic Ablation of <i>Drosophila</i> Phagocytes Reveals Their Contribution to Both Development and Resistance to Bacterial Infection. Journal of Innate Immunity, 2009, 1, 322-334.	3.8	111
66	Male-killing toxin in a bacterial symbiont of Drosophila. Nature, 2018, 557, 252-255.	27.8	111
67	A Serpin that Regulates Immune Melanization in the Respiratory System of Drosophila. Developmental Cell, 2008, 15, 617-626.	7.0	109
68	More Than Black or White: Melanization and Toll Share Regulatory Serine Proteases in Drosophila. Cell Reports, 2019, 27, 1050-1061.e3.	6.4	106
69	Vertical Transmission of a <i>Drosophila</i> Endosymbiont Via Cooption of the Yolk Transport and Internalization Machinery. MBio, 2013, 4, .	4.1	105
70	A Ubiquitin-Proteasome Pathway Represses the Drosophila Immune Deficiency Signaling Cascade. Current Biology, 2002, 12, 1728-1737.	3.9	102
71	Insect endosymbiont proliferation is limited by lipid availability. ELife, 2014, 3, e02964.	6.0	102
72	Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult pigmentation. Developmental Biology, 2008, 323, 189-196.	2.0	101

#	Article	IF	CITATIONS
73	Monalysin, a Novel ß-Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila, Contributes to Host Intestinal Damage and Lethality. PLoS Pathogens, 2011, 7, e1002259.	4.7	101
74	Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster. Cellular Microbiology, 2011, 13, 1385-1396.	2.1	99
75	Maternal repression of the P element promoter in the germline of Drosophila melanogaster: a model for the P cytotype Genetics, 1993, 135, 149-160.	2.9	97
76	In Vivo Regulation of the $\hat{I}^{\circ}B$ Homologue cactus during the Immune Response of Drosophila. Journal of Biological Chemistry, 1998, 273, 10463-10469.	3.4	96
77	The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in $\langle i \rangle$ Drosophila $\langle i \rangle$. MBio, 2016, 7, .	4.1	96
78	Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biology, 2017, 15, 79.	3.8	92
79	A Drosophila Pattern Recognition Receptor Contains a Peptidoglycan Docking Groove and Unusual L,D-Carboxypeptidase Activity. PLoS Biology, 2004, 2, e277.	5.6	88
80	Drosophila Immunity: Analysis of PGRP-SB1 Expression, Enzymatic Activity and Function. PLoS ONE, 2011, 6, e17231.	2.5	87
81	Transforming Growth Factor \hat{I}^2 /Activin Signaling Functions as a Sugar-Sensing Feedback Loop to Regulate Digestive Enzyme Expression. Cell Reports, 2014, 9, 336-348.	6.4	86
82	Drosophila Immunity: Analysis of Larval Hemocytes by P-Element-Mediated Enhancer Trap. Genetics, 1997, 147, 623-634.	2.9	85
83	The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes To Cells, 2006, 11 , 397-407.	1.2	83
84	The Drosophila MAPK p38c Regulates Oxidative Stress and Lipid Homeostasis in the Intestine. PLoS Genetics, 2014, 10, e1004659.	3.5	83
85	Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov Systematic and Applied Microbiology, 2012, 35, 145-149.	2.8	82
86	A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Reports, 2003, 4, 205-209.	4.5	78
87	Iron sequestration by transferrin 1 mediates nutritional immunity in <i>Drosophila melanogaster</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7317-7325.	7.1	78
88	PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway. Immunity, 2016, 45, 1013-1023.	14.3	77
89	Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection. Immunity, 2018, 48, 897-910.e7.	14.3	76
90	Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila. PLoS Pathogens, 2009, 5, e1000694.	4.7	73

#	Article	IF	Citations
91	Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. Nature Communications, 2015, 6, 10219.	12.8	72
92	Drosophila: a polyvalent model to decipher host–pathogen interactions. Trends in Microbiology, 2004, 12, 235-242.	7.7	71
93	<i>Drosophila</i> Antimicrobial Peptides and Lysozymes Regulate Gut Microbiota Composition and Abundance. MBio, 2021, 12, e0082421.	4.1	71
94	P regulatory products repress in vivo the P promoter activity in P-lacZ fusion genes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4419-4423.	7.1	69
95	The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in <i>Drosophila melanogaster</i>). Biology Open, 2015, 4, 355-363.	1.2	69
96	Adult Drosophila Lack Hematopoiesis but Rely on a Blood Cell Reservoir at the Respiratory Epithelia to Relay Infection Signals to Surrounding Tissues. Developmental Cell, 2019, 51, 787-803.e5.	7.0	64
97	The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. ELife, 2019, 8, .	6.0	64
98	Evolution of longevity improves immunity in <i>Drosophila</i> . Evolution Letters, 2018, 2, 567-579.	3.3	62
99	Genome Sequence of the Drosophila melanogaster Male-Killing Spiroplasma Strain MSRO Endosymbiont. MBio, 2015, 6, .	4.1	60
100	Maternal inheritance of P cytotype in Drosophila melanogaster: a "pre-P cytotype―is strictly extra-chromosomally transmitted. Molecular Genetics and Genomics, 1993, 241-241, 115-123.	2.4	59
101	A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cellular Microbiology, 2010, 12, 1666-1679.	2.1	59
102	Translation inhibition and metabolic stress pathways in the host response to bacterial pathogens. Nature Reviews Microbiology, 2013, 11, 365-369.	28.6	59
103	Insect Immunity: The Diptericin Promoter Contains Multiple Functional Regulatory Sequences Homologous to Mammalian Acute-Phase Response Elements. Biochemical and Biophysical Research Communications, 1993, 197, 508-517.	2.1	58
104	A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila. PLoS Genetics, 2017, 13, e1006854.	3. 5	58
105	Functional Analysis of PGRP-LA in Drosophila Immunity. PLoS ONE, 2013, 8, e69742.	2.5	56
106	Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity. Journal of the American Chemical Society, 2016, 138, 9193-9204.	13.7	56
107	A Non-Redundant Role for Drosophila Mkk4 and Hemipterous/Mkk7 in TAK1-Mediated Activation of JNK. PLoS ONE, 2009, 4, e7709.	2.5	55
108	Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence. Nature Communications, 2015, 6, 7829.	12.8	54

#	Article	IF	CITATIONS
109	Dynamic Evolution of Antimicrobial Peptides Underscores Trade-Offs Between Immunity and Ecological Fitness. Frontiers in Immunology, 2019, 10, 2620.	4.8	54
110	The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation. Developmental Biology, 2006, 295, 156-163.	2.0	53
111	Sensing Gram-negative bacteria: a phylogenetic perspective. Current Opinion in Immunology, 2016, 38, 8-17.	5 . 5	51
112	<i>In Vitro</i> Culture of the Insect Endosymbiont <i>Spiroplasma poulsonii</i> Highlights Bacterial Genes Involved in Host-Symbiont Interaction. MBio, 2018, 9, .	4.1	51
113	Directed expression of the HIVâ€1 accessory protein Vpu in Drosophila fatâ€body cells inhibits Tollâ€dependent immune responses. EMBO Reports, 2003, 4, 976-981.	4.5	50
114	Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the <i>Drosophila</i> innate immune system. Journal of Endotoxin Research, 2005, 11, 105-111.	2.5	47
115	Male-killing symbiont damages host's dosage-compensated sex chromosome to induce embryonic apoptosis. Nature Communications, 2016, 7, 12781.	12.8	47
116	Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage. Immunity, 2020, 52, 374-387.e6.	14.3	47
117	Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cellular Microbiology, 2007, 9, 106-119.	2.1	46
118	The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors. Nature Immunology, 2016, 17, 1150-1158.	14.5	45
119	Drosophila Immunity. , 2008, 415, 379-394.		44
120	IMMUNOLOGY: Enhanced: Pathogen Surveillancethe Flies Have It. Science, 2002, 296, 273-275.	12.6	38
121	Infection Dynamics and Immune Response in a Newly Described <i>Drosophila</i> -Trypanosomatid Association. MBio, 2015, 6, e01356-15.	4.1	36
122	Physiological Adaptations to Sugar Intake: New Paradigms from Drosophila melanogaster. Trends in Endocrinology and Metabolism, 2017, 28, 131-142.	7.1	36
123	Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in <i>DrosophilaÂmelanogaster</i> . FEBS Journal, 2019, 286, 2670-2691.	4.7	35
124	The Drosophila Baramicin polypeptide gene protects against fungal infection. PLoS Pathogens, 2021, 17, e1009846.	4.7	34
125	Gut physiology mediates a tradeâ€off between adaptation to malnutrition and susceptibility to foodâ€borne pathogens. Ecology Letters, 2015, 18, 1078-1086.	6.4	33
126	X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form. Journal of Biological Chemistry, 2015, 290, 13191-13201.	3.4	33

#	Article	IF	Citations
127	Common and unique strategies of male killing evolved in two distinct Drosophila symbionts. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172167.	2.6	33
128	Science, narcissism and the quest for visibility. FEBS Journal, 2017, 284, 875-882.	4.7	32
129	Cecropins contribute to <i>Drosophila</i> host defense against a subset of fungal and Gram-negative bacterial infection. Genetics, 2022, 220, .	2.9	32
130	The adipokine NimrodB5 regulates peripheral hematopoiesis in <i>Drosophila</i> . FEBS Journal, 2020, 287, 3399-3426.	4.7	31
131	Expression of antimicrobial peptide genes after infection by parasitoid wasps in Drosophila. Developmental and Comparative Immunology, 1996, 20, 175-181.	2.3	30
132	27 Methods for studying infection and immunity in Drosophila. Methods in Microbiology, 2002, 31, 507-529.	0.8	30
133	DrosophilaP element: Transposition, regulation and evolution. Genetica, 1994, 93, 61-78.	1.1	29
134	Mercury is a direct and potent $\hat{I}^3 \hat{a} \in s$ ecretase inhibitor affecting Notch processing and development in Drosophila. FASEB Journal, 2011, 25, 2287-2295.	0.5	28
135	Growing Ungrowable Bacteria: Overview and Perspectives on Insect Symbiont Culturability. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	28
136	Evf, a Virulence Factor Produced by the Drosophila Pathogen Erwinia carotovora, Is an S-Palmitoylated Protein with a New Fold That Binds to Lipid Vesicles. Journal of Biological Chemistry, 2009, 284, 3552-3562.	3.4	27
137	Comparative RNA-Seq analyses of Drosophila plasmatocytes reveal gene specific signatures in response to clean injury and septic injury. PLoS ONE, 2020, 15, e0235294.	2.5	24
138	dRYBP Contributes to the Negative Regulation of the Drosophila Imd Pathway. PLoS ONE, 2013, 8, e62052.	2.5	24
139	Recognition and response to microbial infection in Drosophila. , 2009, , 13-33.		23
140	Pseudomonas entomophila: A Versatile Bacterium with Entomopathogenic Properties., 2015,, 25-49.		22
141	The Black cells phenotype is caused by a point mutation in the Drosophila pro-phenoloxidase 1 gene that triggers melanization and hematopoietic defects. Developmental and Comparative Immunology, 2015, 50, 166-174.	2.3	21
142	Sensing microbes by diverse hosts. EMBO Reports, 2003, 4, 932-936.	4.5	18
143	The Exchangeable Apolipoprotein Nplp2 Sustains Lipid Flow and Heat Acclimation in Drosophila. Cell Reports, 2019, 27, 886-899.e6.	6.4	17
144	<i>Drosophila</i> immunity: the <i>Drosocin</i> gene encodes two host defence peptides with pathogen-specific roles. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	17

#	Article	IF	CITATIONS
145	Functional analysis of RIP toxins from the Drosophila endosymbiont Spiroplasma poulsonii. BMC Microbiology, 2019, 19, 46.	3.3	16
146	Rapid molecular evolution of Spiroplasma symbionts of Drosophila. Microbial Genomics, 2021, 7, .	2.0	15
147	From Embryo to Adult: Hematopoiesis along the Drosophila Life Cycle. Developmental Cell, 2015, 33, 367-368.	7.0	13
148	Connecting the obesity and the narcissism epidemics. Medical Hypotheses, 2016, 95, 10-19.	1.5	13
149	Cell Division by Longitudinal Scission in the Insect Endosymbiont Spiroplasma poulsonii. MBio, 2016, 7,	4.1	13
150	The post-genomic era opens. Nature, 2002, 419, 496-497.	27.8	12
151	The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila. PLoS ONE, 2017, 12, e0185370.	2.5	12
152	Dual proteomics of Drosophila melanogaster hemolymph infected with the heritable endosymbiont Spiroplasma poulsonii. PLoS ONE, 2021, 16, e0250524.	2.5	12
153	Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii. Cellular Microbiology, 2020, 22, e13156.	2.1	10
154	Transformation of the <i>Drosophila</i> Sex-Manipulative Endosymbiont Spiroplasma poulsonii and Persisting Hurdles for Functional Genetic Studies. Applied and Environmental Microbiology, 2020, 86, .	3.1	10
155	Steroidâ€dependent switch of OvoL/Shavenbaby controls selfâ€renewal versus differentiation of intestinal stem cells. EMBO Journal, 2021, 40, e104347.	7.8	10
156	The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. IScience, 2021, 24, 103458.	4.1	10
157	Animal models for host–pathogen interactions. Current Opinion in Microbiology, 2008, 11, 249-250.	5.1	8
158	A secreted factor NimrodB4 promotes the elimination of apoptotic corpses by phagocytes in <i>Drosophila</i> . EMBO Reports, 2021, 22, e52262.	4.5	8
159	Crystallization and preliminary X-ray analysis of monalysin, a novel \hat{I}^2 -pore-forming toxin from the entomopathogen (i) Pseudomonas entomophila (i). Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 930-933.	0.7	7
160	The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between <i>Drosophila melanogaster</i> and <i>Spiroplasma poulsonii</i> . MicroLife, 2021, 2, .	2.1	7
161	Repeated truncation of a modular antimicrobial peptide gene for neural context. PLoS Genetics, 2022, 18, e1010259.	3.5	6
162	Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila. Cell Reports, 2013, 3, 1755.	6.4	5

#	Article	IF	CITATIONS
163	Determination of the structure of the O-antigen and the lipid A from the entomopathogenic bacterium Pseudomonas entomophila lipopolysaccharide along with its immunological properties. Carbohydrate Research, 2015, 412, 20-27.	2.3	5
164	Transforming Growth Factor \hat{l}^2 /Activin signaling in neurons increases susceptibility to starvation. PLoS ONE, 2017, 12, e0187054.	2.5	5
165	La drosophile : un modÃ"le pour l'étude de la réponse immunitaire innée. Medecine/Sciences, 1999, 15, 15.	. 0.2	4
166	Protection from within. ELife, 2017, 6, .	6.0	4
167	Different flavors of Toll guide olfaction. Trends in Immunology, 2015, 36, 439-441.	6.8	3
168	Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of <i>Spiroplasma</i> insect endosymbionts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
169	Stop press: genes that fight infections: what the drosophila genome says about animal immunity. Trends in Genetics, 2000, 16, 468.	6.7	2
170	Insect–microbe interactions: the good, the bad and the others. Current Opinion in Microbiology, 2012, 15, 217-219.	5.1	2
171	Autophagy as a Gatekeeper of Intestinal Homeostasis. Developmental Cell, 2021, 56, 5-6.	7.0	2
172	Blood Cells of Adult <i>Drosophila</i> Do Not Expand, But Control Survival after Bacterial Infection by Induction of <i>Drosocin</i> Around Their Reservoir at the Respiratory Epithelia. SSRN Electronic Journal, O, , .	0.4	1
173	G2.5 Characterization of transactivating factors involved in the bacteria-induced expression of the diptericin gene in Drosophila. Developmental and Comparative Immunology, 1994, 18, S123.	2.3	O
174	Le génome de la mouche du vinaigre Medecine/Sciences, 2000, 16, 693.	0.2	0
175	Title is missing!. , 2020, 15, e0235294.		О
176	Title is missing!. , 2020, 15, e0235294.		0
177	Title is missing!. , 2020, 15, e0235294.		O
178	Title is missing!. , 2020, 15, e0235294.		0