
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1422560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arachis hypogaea L. from Acid Soils of Nanyang (China) Is Frequently Associated with Bradyrhizobium guangdongense and Occasionally with Bradyrhizobium ottawaense or Three Bradyrhizobium Genospecies. Microbial Ecology, 2022, 84, 556-564.	1.4	6
2	Phylogenetic diversity and plant growth-promoting activities of rhizobia nodulating fenugreek (Trigonella foenum-graecum Linn.) cultivated in different agroclimatic regions of India. FEMS Microbiology Ecology, 2022, , .	1.3	12
3	Fields with no recent legume cultivation have sufficient nitrogen-fixing rhizobia for crops of faba bean (Vicia faba L.). Plant and Soil, 2022, 472, 345-368.	1.8	11
4	WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles. Biochemical Journal, 2022, 479, 641-659.	1.7	2
5	Delineation of Paraburkholderia tuberum sensu stricto and description of Paraburkholderia podalyriae sp. nov. nodulating the South African legume Podalyria calyptrata. Systematic and Applied Microbiology, 2022, 45, 126316.	1.2	5
6	Genomic Diversity of Bradyrhizobium from the Tree Legumes Inga and Lysiloma (Caesalpinioideae-Mimosoid Clade). Diversity, 2022, 14, 518.	0.7	3
7	Evolution of novel strains of <i>Ensifer</i> nodulating the invasive legume <i>Leucaena leucocephala</i> (Lam.) de Wit in different climatic regions of India through lateral gene transfer. FEMS Microbiology Ecology, 2022, 98, .	1.3	4
8	Paraburkholderia youngii sp. nov. and â€~Paraburkholderia atlantica' – Brazilian and Mexican Mimosa-associated rhizobia that were previously known as Paraburkholderia tuberum sv. mimosae. Systematic and Applied Microbiology, 2021, 44, 126152.	1.2	20
9	Defining the Rhizobium leguminosarum Species Complex. Genes, 2021, 12, 111.	1.0	48
10	Conditional sanctioning in a legume– <i>Rhizobium</i> mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
11	Genomic Diversity of Pigeon Pea (Cajanus cajan L. Millsp.) Endosymbionts in India and Selection of Potential Strains for Use as Agricultural Inoculants. Frontiers in Plant Science, 2021, 12, 680981.	1.7	12
12	The large mimosoid genus Inga Mill. (tribe Ingeae, Caesalpinioideae) is nodulated by diverse Bradyrhizobium strains in its main centers of diversity in Brazil. Systematic and Applied Microbiology, 2021, 44, 126268.	1.2	5
13	Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera. Genes, 2021, 12, 71.	1.0	16
14	Distinct signaling routes mediate intercellular and intracellular rhizobial infection in <i>Lotus japonicus</i> . Plant Physiology, 2021, 185, 1131-1147.	2.3	26
15	Deciphering Molecular Host-Pathogen Interactions During Ramularia Collo-Cygni Infection on Barley. Frontiers in Plant Science, 2021, 12, 747661.	1.7	4
16	Role and Regulation of Poly-3-Hydroxybutyrate in Nitrogen Fixation in <i>Azorhizobium caulinodans</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1390-1398.	1.4	2
17	The widely distributed legume tree Vachellia (Acacia) nilotica subsp. indica is nodulated by genetically diverse Ensifer strains in India. Symbiosis, 2020, 80, 15-31.	1.2	16
18	Reliable quantification of N2 fixation by non-legumes remains problematic. Nutrient Cycling in Agroecosystems, 2020, 118, 223-225.	1.1	8

#	Article	IF	CITATIONS
19	Beneficial microorganisms in agriculture: the future of plant growth-promoting rhizobacteria. Plant and Soil, 2020, 451, 1-3.	1.8	9
20	The Biology of Legumes and Their Agronomic, Economic, and Social Impact. , 2020, , 3-25.		11
21	Genomic diversity of chickpea-nodulating rhizobia in Ningxia (north central China) and gene flow within symbiotic Mesorhizobium muleiense populations. Systematic and Applied Microbiology, 2020, 43, 126089.	1.2	14
22	Diversity and Geographic Distribution of Microsymbionts Associated With Invasive Mimosa Species in Southern China. Frontiers in Microbiology, 2020, 11, 563389.	1.5	6
23	Towards a characterisation of the wild legume bitter vetch (<i>Lathyrus linifolius</i> L. (Reichard)) Tj ETQq1 1 Plant Biology, 2019, 21, 523-532.	0.784314 r 1.8	gBT /Overloc 7
24	Trinickia dabaoshanensis sp. nov., a new name for a lost species. Archives of Microbiology, 2019, 201, 1313-1316.	1.0	14
25	An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by <i>Bradyrhizobium diazoefficiens</i> (syn. Bradyrhizobium japonicum) USDA110 ^T . Applied and Environmental Microbiology, 2019, 85, .	1.4	8
26	Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid. Plant Journal, 2019, 100, 38-54.	2.8	28
27	Formulation of a Highly Effective Inoculant for Common Bean Based on an Autochthonous Elite Strain of Rhizobium leguminosarum bv. phaseoli, and Genomic-Based Insights Into Its Agronomic Performance. Frontiers in Microbiology, 2019, 10, 2724.	1.5	36
28	Mesorhizobium carmichaelinearum sp. nov., isolated from Carmichaelineae spp. root nodules. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 146-152.	0.8	11
29	Interdependency of efficient nodulation and arbuscular mycorrhization in <i>Piptadenia gonoacantha,</i> a Brazilian legume tree. Plant, Cell and Environment, 2018, 41, 2008-2020.	2.8	21
30	Brazilian species of Calliandra Benth. (tribe Ingeae) are nodulated by diverse strains of Paraburkholderia. Systematic and Applied Microbiology, 2018, 41, 241-250.	1.2	46
31	LYS12 LysM receptor deceleratesPhytophthora palmivoradisease progression inLotus japonicus. Plant Journal, 2018, 93, 297-310.	2.8	26
32	Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant and Soil, 2018, 423, 411-428.	1.8	71
33	Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiology Ecology, 2018, 94, .	1.3	46
34	A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. New Phytologist, 2018, 220, 526-538.	3.5	14
35	Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae. Genes, 2018, 9, 389.	1.0	252
36	Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes, 2018, 9, 321.	1.0	124

#	Article	IF	CITATIONS
37	A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. ELife, 2018, 7, .	2.8	32
38	Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant and Soil, 2017, 410, 21-40.	1.8	63
39	The Ethylene Responsive Factor Required for Nodulation 1 (ERN1) Transcription Factor Is Required for Infection-Thread Formation in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2017, 30, 194-204.	1.4	72
40	Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (Moench) (Fabaceae,) Tj ETQq0 0 0 rgB1	[/Overloc 1.2	k 10 Tf 50 6
41	Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nature Communications, 2017, 8, 14534.	5.8	149
42	Biogeography of nodulated legumes and their nitrogenâ€fixing symbionts. New Phytologist, 2017, 215, 40-56.	3.5	280
43	The oilâ€contaminated soil diazotroph <i><scp>A</scp>zoarcus olearius</i> <scp>DQS</scp> â€4 ^T is genetically and phenotypically similar to the model grass endophyte <i><scp>A</scp>zoarcus</i> sp. <scp>BH</scp> 72. Environmental Microbiology Reports. 2017. 9. 223-238.	1.0	42
44	Evolution of a multiâ€step phosphorelay signal transduction system in <i>Ensifer</i> : recruitment of the sigma factor RpoN and a novel enhancerâ€binding protein triggers acidâ€activated gene expression. Molecular Microbiology, 2017, 103, 829-844.	1.2	1
45	Molecular characterization of novel Bradyrhizobium strains nodulating Eriosema chinense and Flemingia vestita , important unexplored native legumes of the sub-Himalayan region (Meghalaya) of India. Systematic and Applied Microbiology, 2017, 40, 334-344.	1.2	25
46	A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation. Frontiers in Plant Science, 2016, 7, 1700.	1.7	60
47	Endemic <i><scp>M</scp>imosa</i> species from <scp>M</scp> exico prefer alphaproteobacterial rhizobial symbionts. New Phytologist, 2016, 209, 319-333.	3.5	72
48	Multi locus sequence analysis and symbiotic characterization of novel Ensifer strains nodulating Tephrosia spp. in the Indian Thar Desert. Systematic and Applied Microbiology, 2016, 39, 534-545.	1.2	24
49	A rhamnose-deficient lipopolysaccharide mutant of <i>Rhizobium</i> sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts <i>Sesbania cannabina</i> and wetland rice. Journal of Experimental Botany, 2016, 67, 5869-5884.	2.4	45
50	Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales. Applied and Environmental Microbiology, 2016, 82, 5099-5115.	1.4	71
51	Characterization of the papilionoid– Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae). Systematic and Applied Microbiology, 2016, 39, 41-48.	1.2	51
52	Novel Cupriavidus Strains Isolated from Root Nodules of Native Uruguayan Mimosa Species. Applied and Environmental Microbiology, 2016, 82, 3150-3164.	1.4	63
53	Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4118-4124.	0.8	52
54	National Meeting of the Spanish Society of Nitrogen Fixation (XV SEFIN). Symbiosis, 2015, 67, 1-2.	1.2	4

#	Article	IF	CITATIONS
55	The deubiquitinating enzyme <scp>AMSH</scp> 1 is required for rhizobial infection and nodule organogenesis in <i>Lotus japonicus</i> . Plant Journal, 2015, 83, 719-731.	2.8	19
56	A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria. PLoS Genetics, 2015, 11, e1005280.	1.5	97
57	Away from the Usual Suspects: Some Potentially Useful but Understudied Nodulated Legumes and Their Symbionts. Agronomy, 2015, , 25-34.	0.2	0
58	In Situ Localization and Strain-Specific Quantification of Azospirillum and Other Diazotrophic Plant Growth-Promoting Rhizobacteria Using Antibodies and Molecular Probes. , 2015, , 45-64.		5
59	Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiology Ecology, 2015, 91, 1-17.	1.3	131
60	Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany, 2015, 66, 2979-2990.	2.4	44
61	Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4716-4723.	0.8	48
62	Improving crop mineral nutrition. Plant and Soil, 2014, 384, 1-5.	1.8	6
63	The geographical patterns of symbiont diversity in the invasive legume <i><scp>M</scp>imosa pudica</i> can be explained by the competitiveness of its symbionts and by the host genotype. Environmental Microbiology, 2014, 16, 2099-2111.	1.8	55
64	Comparisons of biological nitrogen fixation in association with white clover (Trifolium repens L.) under four fertiliser nitrogen inputs as measured using two 15N techniques. Plant and Soil, 2014, 385, 287-302.	1.8	36
65	Burkholderia sp. Induces Functional Nodules on the South African Invasive Legume Dipogon lignosus (Phaseoleae) in New Zealand Soils. Microbial Ecology, 2014, 68, 542-555.	1.4	63
66	Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Standards in Genomic Sciences, 2014, 9, 763-774.	1.5	71
67	Comparative Genomics of Herbaspirillum Species. , 2014, , 171-198.		4
68	Azoarcus olearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3755-3761.	0.8	38
69	From North to South: A latitudinal look at legume nodulation processes. South African Journal of Botany, 2013, 89, 31-41.	1.2	75
70	The plant microbiome. Genome Biology, 2013, 14, 209.	3.8	1,028
71	Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 435-441.	0.8	94
72	Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitroâ€oxidative stress. Plant Journal, 2013, 76, 875-887.	2.8	44

#	Article	IF	CITATIONS
73	Partial Complementation of Sinorhizobium meliloti bacA Mutant Phenotypes by the Mycobacterium tuberculosis BacA Protein. Journal of Bacteriology, 2013, 195, 389-398.	1.0	24
74	An invasive Mimosa in India does not adopt the symbionts of its native relatives. Annals of Botany, 2013, 112, 179-196.	1.4	100
75	Regulon Studies and <i>In Planta</i> Role of the Bral/R Quorum-Sensing System in the Plant-Beneficial Burkholderia Cluster. Applied and Environmental Microbiology, 2013, 79, 4421-4432.	1.4	32
76	Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae). PLoS ONE, 2013, 8, e63478.	1.1	108
77	Effect of phosphoglycerate mutase and fructose 1,6-bisphosphatase deficiency on symbiotic Burkholderia phymatum. Microbiology (United Kingdom), 2012, 158, 1127-1136.	0.7	6
78	Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Mimosa pudica. Microbiology (United Kingdom), 2012, 158, 1758-1766.	0.7	10
79	Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. Journal of Experimental Botany, 2012, 63, 3923-3934.	2.4	22
80	<i>Lotus japonicus ARPC1</i> Is Required for Rhizobial Infection Â. Plant Physiology, 2012, 160, 917-928.	2.3	78
81	Nodulation and ecological significance of indigenous legumes in Scotland and Sweden. Symbiosis, 2012, 57, 133-148.	1.2	9
82	Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2272-2278.	0.8	76
83	Nodulation of legumes from the Thar desert of India and molecular characterization of their rhizobia. Plant and Soil, 2012, 357, 227-243.	1.8	57
84	Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a Threatened Species Native to the Brazilian Cerrado. PLoS ONE, 2012, 7, e49520.	1.1	38
85	The role of biological nitrogen fixation by non-legumes in the sustainable production of food and biofuels. Plant and Soil, 2012, 356, 1-3.	1.8	23
86	Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiology Ecology, 2012, 80, 417-426.	1.3	78
87	Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia. Microbial Ecology, 2012, 63, 249-266.	1.4	321
88	Rhizobia with 16S rRNA and nifH Similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC Genes Are Symbionts of New Zealand Carmichaelinae. PLoS ONE, 2012, 7, e47677.	1.1	23
89	Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects. Molecular Plant-Microbe Interactions, 2011, 24, 1276-1288.	1.4	378
90	Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture. Journal of Experimental Botany, 2011, 62, 371-381.	2.4	39

#	Article	IF	CITATIONS
91	Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using15N natural abundance. Plant Ecology and Diversity, 2011, 4, 131-140.	1.0	66
92	Expression and Localization of a <i>Rhizobium</i> -Derived Cambialistic Superoxide Dismutase in Pea (<i>Pisum sativum</i>) Nodules Subjected to Oxidative Stress. Molecular Plant-Microbe Interactions, 2011, 24, 1247-1257.	1.4	14
93	Improved Characterization of Nod Factors and Genetically Based Variation in LysM Receptor Domains Identify Amino Acids Expendable for Nod Factor Recognition in <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2010, 23, 58-66.	1.4	62
94	Nodulation and nitrogen fixation by <i>Mimosa</i> spp. in the Cerrado and Caatinga biomes of Brazil. New Phytologist, 2010, 186, 934-946.	3.5	170
95	<i>Burkholderia</i> species are ancient symbionts of legumes. Molecular Ecology, 2010, 19, 44-52.	2.0	245
96	BacA Is Essential for Bacteroid Development in Nodules of Galegoid, but not Phaseoloid, Legumes. Journal of Bacteriology, 2010, 192, 2920-2928.	1.0	67
97	The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications, 2010, 1, 10.	5.8	426
98	The Sinorhizobium meliloti LpxXL and AcpXL Proteins Play Important Roles in Bacteroid Development within Alfalfa. Journal of Bacteriology, 2009, 191, 4681-4686.	1.0	43
99	<i>Burkholderia</i> spp. are the most competitive symbionts of <i>Mimosa</i> , particularly under Nâ€imited conditions. Environmental Microbiology, 2009, 11, 762-778.	1.8	157
100	Nodulation of <i>Sesbania</i> species by <i>Rhizobium</i> (<i>Agrobacterium</i>) strain IRBG74 and other rhizobia. Environmental Microbiology, 2009, 11, 2510-2525.	1.8	120
101	The glutathione peroxidase gene family of <i>Lotus japonicus</i> : characterization of genomic clones, expression analyses and immunolocalization in legumes. New Phytologist, 2009, 181, 103-114.	3.5	56
102	Immunolocalization of antioxidant enzymes in highâ€pressure frozen root and stem nodules of <i>Sesbania rostrata</i> . New Phytologist, 2009, 183, 395-407.	3.5	28
103	Rearrangement of Actin Cytoskeleton Mediates Invasion of <i>Lotus japonicus</i> Roots by <i>Mesorhizobium loti</i> Â Â. Plant Cell, 2009, 21, 267-284.	3.1	149
104	Absence of Symbiotic Leghemoglobins Alters Bacteroid and Plant Cell Differentiation During Development of <i>Lotus japonicus</i> Root Nodules. Molecular Plant-Microbe Interactions, 2009, 22, 800-808.	1.4	55
105	Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal of Hazardous Materials, 2008, 151, 364-371.	6.5	126
106	Legume–rhizobial symbiosis: an anorexic model?. New Phytologist, 2008, 179, 3-5.	3.5	25
107	The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis. Microbiology (United) Tj ETQq1	1 0.7843 0.7	14 rgBT /Ove
	Burkholderia sabiae sp. nov. isolated from root nodules of Mimosa caesalpiniifolia. International		

¹⁰⁸ Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2174-2179.

0.8 107

#	Article	IF	CITATIONS
109	Nutrient Sharing between Symbionts. Plant Physiology, 2007, 144, 604-614.	2.3	192
110	Characterization of Genomic Clones and Expression Analysis of the Three Types of Superoxide Dismutases During Nodule Development in Lotus japonicus. Molecular Plant-Microbe Interactions, 2007, 20, 262-275.	1.4	46
111	Legume Evolution: Where Do Nodules and Mycorrhizas Fit In?. Plant Physiology, 2007, 144, 575-581.	2.3	192
112	Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Annals of Botany, 2007, 100, 1403-1411.	1.4	154
113	Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1055-1059.	0.8	152
114	LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO Journal, 2007, 26, 3923-3935.	3.5	346
115	Burkholderia phymatum is a highly effective nitrogenâ€fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytologist, 2007, 173, 168-180.	3.5	210
116	Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia. Antonie Van Leeuwenhoek, 2007, 91, 105-113.	0.7	36
117	Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 577-581.	0.8	30
118	Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1847-1851.	0.8	169
119	Spontaneous Root-Nodule Formation in the Model Legume Lotus japonicus: A Novel Class of Mutants Nodulates in the Absence of Rhizobia. Molecular Plant-Microbe Interactions, 2006, 19, 373-382.	1.4	94
120	Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiologia Plantarum, 2006, 127, 247-259.	2.6	105
121	From The Cover: A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 359-364.	3.3	361
122	βâ€Rhizobia from Mimosa pigra , a newly discovered invasive plant in Taiwan. New Phytologist, 2005, 168, 661-675.	3.5	140
123	Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa -Nodulating Strains from South America. Applied and Environmental Microbiology, 2005, 71, 7461-7471.	1.4	172
124	Molecular mechanisms of kinetochore capture by spindle microtubules. Nature, 2005, 434, 987-994.	13.7	260
125	The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell, 2005, 17, 1625-1636.	3.1	227
126	Poster Summaries. Current Plant Science and Biotechnology in Agriculture, 2005, , 398-430.	0.0	0

#	Article	IF	CITATIONS
127	Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6303-6308.	3.3	121
128	Localization of Superoxide Dismutases and Hydrogen Peroxide in Legume Root Nodules. Molecular Plant-Microbe Interactions, 2004, 17, 1294-1305.	1.4	115
129	Functional Characterization and Expression of a Cytosolic Iron-Superoxide Dismutase from Cowpea Root Nodules,. Plant Physiology, 2003, 133, 773-782.	2.3	74
130	Nodulation of Mimosa spp. by the β-Proteobacterium Ralstonia taiwanensis. Molecular Plant-Microbe Interactions, 2003, 16, 1051-1061.	1.4	131
131	Effect of water stress on nitrogen fixation and nodule structure of common bean. Pesquisa Agropecuaria Brasileira, 2003, 38, 339-347.	0.9	61
132	Molecular Cloning, Functional Characterization, and Subcellular Localization of Soybean Nodule Dihydrolipoamide Reductase,. Plant Physiology, 2002, 128, 300-313.	2.3	25
133	Infection and Colonization of Rice Seedlings by the Plant Growth-Promoting Bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 2002, 15, 894-906.	1.4	351
134	Nitrogen Fixation in Rice. , 2002, , 421-445.		22
135	Herbaspirillum colonization increases growth and nitrogen accumulation in aluminiumâ€ŧolerant rice varieties. New Phytologist, 2002, 154, 131-145.	3.5	153
136	Photosynthetic oxygen evolution within Sesbania rostrata stem nodules. Plant Journal, 2002, 13, 29-38.	2.8	19
137	Adsorption and anchoring of Azospirillumstrains to roots of wheat seedlings. Plant and Soil, 2002, 246, 151-166.	1.8	25
138	Endophytic Colonization of Rice by a Diazotrophic Strain of Serratia marcescens. Journal of Bacteriology, 2001, 183, 2634-2645.	1.0	304
139	Flooding-tolerant legume symbioses from the Brazilian Pantanal. New Phytologist, 2001, 150, 723-738.	3.5	59
140	Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions1. Journal of Experimental Botany, 2001, 52, 747-760.	2.4	123
141	Detopping causes production of intercellular space occlusions in both the cortex and infected region of soybean nodules. Plant, Cell and Environment, 2000, 23, 377-386.	2.8	12
142	Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 2000, 65, 197-209.	2.3	374
143	Development of N2-fixing nodules on the wetland legumeLotus uliginosusexposed to conditions of flooding. New Phytologist, 1999, 142, 219-231.	3.5	69
144	The development and structure of root nodules on bambara groundnut [Voandzeia (Vigna)subterranea]. World Journal of Microbiology and Biotechnology, 1998, 14, 177-184.	1.7	8

#	Article	IF	CITATIONS
145	Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs. Critical Reviews in Plant Sciences, 1998, 17, 77-119.	2.7	226
146	Nitrogen fixation by legumes in flooded regions. Oecologia Brasiliensis, 1998, 04, 195-233.	0.6	10
147	Herbaspirillum, an endophytic diazotroph colonizing vascular tissue 3Sorghum bicolor L. Moench. Journal of Experimental Botany, 1997, 48, 785-798.	2.4	141
148	Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytologist, 1997, 135, 723-737.	3.5	146
149	Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia, 1996, 105, 440-446.	0.9	85
150	Photosystem II and oxygen regulation in Sesbania rostrata stem nodules. Plant, Cell and Environment, 1996, 19, 895-910.	2.8	30
151	Stem and root nodules on the tropical wetland legume Aeschynomene fluminensis. New Phytologist, 1995, 130, 531-544.	3.5	45
152	Time-course of changes involved in the operation of the oxygen diffusion barrier in white lupin nodules. Journal of Experimental Botany, 1995, 46, 565-575.	2.4	36
153	Interaction between rhizobia and potato tissues10. Journal of Experimental Botany, 1994, 45, 1475-1482.	2.4	26
154	Nitrogenâ€fixing stem nodules of the Legume, Discolobium pulchellum Benth New Phytologist, 1994, 128, 283-295.	3.5	46
155	Infection of sugar cane by the nitrogen-fixing bacteriumAcetobacter diazotrophicus. Journal of Experimental Botany, 1994, 45, 757-766.	2.4	302
156	An ELISA Procedure for Quantification of Relative Amounts of Intercellular Glycoprotein in Legume Nodules. Annals of Botany, 1993, 71, 85-90.	1.4	22
157	Oxygen Diffusion in Lupin Nodules. Journal of Experimental Botany, 1993, 44, 1461-1467.	2.4	66
158	The Effect of Irradiance on the Recovery of Soybean Nodules from Sodium Chloride-Induced Senescence. Journal of Experimental Botany, 1993, 44, 997-1005.	2.4	25
159	Oxygen Diffusion in Lupin Nodules. Journal of Experimental Botany, 1993, 44, 1469-1474.	2.4	56
160	The Structure of Nitrogen Fixing Root Nodules on the Aquatic Mimosoid Legume Neptunia plena. Annals of Botany, 1992, 69, 173-180.	1.4	83
161	The evolutionary significance of the legume genus Chamaecrista , as determined by nodule structure. New Phytologist, 1992, 122, 487-492.	3.5	74
162	Intercellular location of glycoprotein in soybean nodules: effect of altered rhizosphere oxygen concentration. Plant, Cell and Environment, 1991, 14, 467-476.	2.8	107

#	Article	IF	CITATIONS
163	Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs. , 0, .		309
164	Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. , 0, .		14