Lingling Chu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1422275/lingling-chu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 6,173 34 78 g-index

88 7,100 9.3 6.54 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
61	Dual catalysis. Merging photoredox with nickel catalysis: coupling of 🛭 -carboxyl sp🖟 carbons with aryl halides. <i>Science</i> , 2014 , 345, 437-40	33.3	1058
60	Oxidative trifluoromethylation and trifluoromethylthiolation reactions using (trifluoromethyl)trimethylsilane as a nucleophilic CF3 source. <i>Accounts of Chemical Research</i> , 2014 , 47, 1513-22	24.3	539
59	Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of ([])-pregabalin. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10886-9	16.4	377
58	Copper-mediated oxidative trifluoromethylation of boronic acids. <i>Organic Letters</i> , 2010 , 12, 5060-3	6.2	333
57	Copper-catalyzed direct C-H oxidative trifluoromethylation of heteroarenes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1298-304	16.4	291
56	Copper-catalyzed oxidative trifluoromethylthiolation of aryl boronic acids with TMSCF3 and elemental sulfur. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2492-5	16.4	269
55	Copper-mediated aerobic oxidative trifluoromethylation of terminal alkynes with Me3SiCF3. Journal of the American Chemical Society, 2010 , 132, 7262-3	16.4	246
54	Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of \square -Oxo Acids. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7929-33	16.4	229
53	Metal-free oxidative trifluoromethylthiolation of terminal alkynes with CF3SiMe3 and elemental sulfur. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12454-7	16.4	227
52	Silver-catalyzed hydrotrifluoromethylation of unactivated alkenes with CF3SiMe3. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2198-202	16.4	226
51	Cu(II)-mediated methylthiolation of aryl C-H bonds with DMSO. <i>Organic Letters</i> , 2010 , 12, 1644-7	6.2	219
50	Copper-catalyzed oxidative trifluoromethylation of terminal alkenes using nucleophilic CF3SiMe3: efficient C(sp3)-CF3 bond formation. <i>Organic Letters</i> , 2012 , 14, 2106-9	6.2	159
49	Copper-catalyzed oxidative trifluoromethylation of terminal alkynes and aryl boronic acids using (trifluoromethyl)trimethylsilane. <i>Journal of Organic Chemistry</i> , 2012 , 77, 1251-7	4.2	148
48	Silver-Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11839-42	16.4	114
47	Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. <i>Chemical Science</i> , 2020 , 11, 4051-4064	9.4	110
46	Intermolecular selective carboacylation of alkenes via nickel-catalyzed reductive radical relay. <i>Nature Communications</i> , 2018 , 9, 3488	17.4	105
45	Electrophilic trifluoromethylthiolation of allylsilanes with trifluoromethanesulfanamide. <i>Organic Letters</i> , 2013 , 15, 894-7	6.2	101

(2020-2012)

Copper-Catalyzed Oxidative Trifluoromethylthiolation of Aryl Boronic Acids with TMSCF3 and Elemental Sulfur. <i>Angewandte Chemie</i> , 2012 , 124, 2542-2545	3.6	97
CuBr-catalyzed oxidative difluoromethylation of tertiary amines with difluoroenol silyl ethers. <i>Organic Letters</i> , 2009 , 11, 2197-200	6.2	97
Enantioselective Three-Component Fluoroalkylarylation of Unactivated Olefins through Nickel-Catalyzed Cross-Electrophile Coupling. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9604	1- 961 1	87
Direct Introduction of Ethoxycarbonyldifluoromethyl-Group to Heteroarenes with Ethyl Bromodifluoroacetate via Visible-Light Photocatalysis. <i>Chinese Journal of Chemistry</i> , 2013 , 31, 885-891	4.9	82
Benzoyl peroxide (BPO)-promoted oxidative trifluoromethylation of tertiary amines with trimethyl(trifluoromethyl)silane. <i>Chemical Communications</i> , 2010 , 46, 6285-7	5.8	75
syn-Selective alkylarylation of terminal alkynes via the combination of photoredox and nickel catalysis. <i>Nature Communications</i> , 2018 , 9, 4543	17.4	71
Silver-Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF3SiMe3. <i>Angewandte Chemie</i> , 2013 , 125, 2254-2258	3.6	69
Selective, Intermolecular Alkylarylation of Alkenes via Photoredox/Nickel Dual Catalysis. <i>Organic Letters</i> , 2019 , 21, 4771-4776	6.2	67
General Method for Enantioselective Three-Component Carboarylation of Alkenes Enabled by Visible-Light Dual Photoredox/Nickel Catalysis. <i>Journal of the American Chemical Society</i> , 2020 ,	16.4	63
Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of □-Oxo Acids. <i>Angewandte Chemie</i> , 2015 , 127, 8040-8044	3.6	60
Metal-free, intermolecular carbopyridylation of alkenes visible-light-induced reductive radical coupling. <i>Chemical Science</i> , 2018 , 9, 9012-9017	9.4	58
Recent Advances in Nickel-Catalyzed Three-Component Difunctionalization of Unactivated Alkenes. <i>Synthesis</i> , 2020 , 52, 1346-1356	2.9	54
PhI(OAc)2-mediated oxidative trifluoromethylation of arenes with CF3SiMe3 under metal-free conditions. <i>Tetrahedron Letters</i> , 2013 , 54, 249-251	2	46
Silver-Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. <i>Angewandte Chemie</i> , 2015 , 127, 12005-12008	3.6	46
Copper-mediated oxidative cross-coupling reaction of terminal alkynes with \(\Pi\)-silyldifluoromethylphosphonates: an efficient method for \(\Pi\),\(\Pi\)-difluoropropargylphosphonates. \(\Organic Letters, 2012 , 14, 2870-3)	6.2	45
Visible-Light-Enabled Stereodivergent Synthesis of E- and Z-Configured 1,4-Dienes by Photoredox/Nickel Dual Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 177-181	16.4	44
Copper-mediated oxidative difluoromethylenation of aryl boronic acids with -silyldifluoromethylphosphonates: a new method for aryldifluorophosphonates. <i>New Journal of Chemistry</i> , 2013 , 37, 1736	3.6	38
Sequential C-O decarboxylative vinylation/C-H arylation of cyclic oxalates a nickel-catalyzed multicomponent radical cascade. <i>Chemical Science</i> , 2020 , 11, 4904-4910	9.4	34
	Elemental Sulfur. Angewandte Chemie, 2012, 124, 2542-2545 Cubr-catalyzed oxidative difluoromethylation of tertiary amines with difluoroenol silyl ethers. Organic Letters, 2009, 11, 2197-200 Enantioselective Three-Component Fluoroalkylarylation of Unactivated Olefins through Nickel-Catalyzed Cross-Electrophile Coupling. Journal of the American Chemical Society, 2020, 142, 9604 Direct Introduction of Ethoxycarbonyldifluoromethyl-Group to Heteroarenes with Ethyl Bromodifluoroacetate via Visible-Light Photocatalysis. Chinese Journal of Chemistry, 2013, 31, 885-891 Benzoyl peroxide (BPO)-promoted oxidative trifluoromethylation of tertiary amines with trimethyl(trifluoromethyl)silane. Chemical Communications, 2010, 46, 6285-7 syn-Selective alkylarylation of terminal alkynes via the combination of photoredox and nickel catalysis. Nature Communications, 2018, 9, 4543 Silver-Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF3SiMe3. Angewandte Chemie, 2013, 125, 2254-2258 Selective, Intermolecular Alkylarylation of Alkenes via Photoredox/Nickel Dual Catalysis. Organic Letters, 2019, 21, 4771-4776 General Method for Enantioselective Three-Component Carboarylation of Alkenes Enabled by Visible-Light Dual Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2020, Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of B-Oxo Acids. Angewandte Chemie, 2015, 127, 8040-8044 Metal-free, intermolecular carbopyridylation of alkenes visible-light-induced reductive radical coupling. Chemical Science, 2018, 9, 9012-9017 Recent Advances in Nickel-Catalyzed Three-Component Difunctionalization of Unactivated Alkenes. Synthesis, 2020, 52, 1346-1356 Phl(OAc)2-mediated oxidative trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. Angewandte Chemie, 2015, 127, 12005-12008 Copper-mediated oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. Angewandte Oxidative Trifluoromethy	Elemental Sulfur. Angewandte Chemie, 2012, 124, 2542-2545 CuBr-catalyzed oxidative difluoromethylation of tertiary amines with difluoroenot silyl ethers. Organic Letters, 2009, 11, 2197-200 Enantioselective Three-Component Fluoroalkylarylation of Unactivated Olefins through Nickel-Catalyzed Cross-Electrophile Coupling. Journal of the American Chemical Society, 2020, 142, 9604-9611 Direct Introduction of Ethoxycarbonyldifluoromethyl-Group to Heteroarenes with Ethyl Benzoyl peroxide (BPO)-promoted oxidative trifluoromethyl-Group to Heteroarenes with Ethyl Benzoyl peroxide (BPO)-promoted oxidative trifluoromethylation of tertiary amines with trimethyl(trifluoromethyl)silane. Chemical Communications, 2010, 46, 6285-7 syn-Selective alkylarylation of terminal alkynes via the combination of photoredox and nickel atalysis. Nature Communications, 2018, 9, 4543 Silver-Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF3SiMe3. Angewandte Chemie, 2013, 125, 2254-2258 Selective, Intermolecular Alkylarylation of Alkenes via Photoredox/Nickel Dual Catalysis. Organic Letters, 2019, 21, 4771-4776 General Method for Enantioselective Three-Component Carboarylation of Alkenes Enabled by Visible-Light Dual Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2020, Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of Il-Oxo Acids. Angewandte Chemie, 2015, 127, 8040-8044 Metal-free, intermolecular carbopyridylation of alkenes visible-light-induced reductive radical coupling. Chemical Science, 2018, 9, 9012-9017 Recent Advances in Nickel-Catalyzed Three-Component Difunctionalization of Unactivated Alkenes. Synthesis, 2020, 52, 1346-1356 Phil(OAc)2-mediated oxidative trifluoromethylation of Phenols: Direct Synthesis of Anyl Trifluoromethyl Ethers. Angewandte Chemie, 2015, 127, 12005-12008 Copper-mediated oxidative Coupling reaction of terminal alkynes with D-silydifluoromethylphosphonates: an efficient method for Il,D-difluoropropargylp

26	Photoredox-catalyzed branch-selective pyridylation of alkenes for the expedient synthesis of Triprolidine. <i>Nature Communications</i> , 2019 , 10, 749	17.4	31
25	A four-component radical cascade trifluoromethylation reaction of alkenes enabled by an electron-donor-acceptor complex. <i>Chemical Communications</i> , 2018 , 54, 12710-12713	5.8	30
24	Intermolecular, redox-neutral azidoarylation of alkenes via photoredox catalysis. <i>Chemical Communications</i> , 2019 , 55, 2336-2339	5.8	28
23	Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. <i>Chemical Society Reviews</i> , 2021 , 50, 10836-10856	58.5	26
22	Catalytic, metal-free sulfonylcyanation of alkenes via visible light organophotoredox catalysis. <i>Chemical Communications</i> , 2018 , 54, 3162-3165	5.8	25
21	Solvent-tuned chemoselective carboazidation and diazidation of alkenes via iron catalysis. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 512-516	5.2	18
20	Visible-light-induced halogenation of aliphatic CH bonds. <i>Tetrahedron Letters</i> , 2018 , 59, 173-179	2	18
19	Bisphosphonium salt: an effective photocatalyst for the intramolecular hydroalkoxylation of olefins. <i>Science Bulletin</i> , 2019 , 64, 1896-1901	10.6	16
18	Silver-Enabled General Radical Difluoromethylation Reaction with TMSCF H. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4300-4306	16.4	14
17	Copper-Catalyzed Aerobic Oxidative Trifluoromethylation of H-Phospholhates Using Trimethyl(trifluoromethyl)silane. <i>Synthesis</i> , 2012 , 44, 1521-1525	2.9	11
16	Total synthesis of the trifluoromethylated analog of isoaltholactone: 5-trifluoromethylisoaltholactone. <i>Journal of Fluorine Chemistry</i> , 2013 , 152, 70-76	2.1	10
15	Visible-Light-Enabled Stereodivergent Synthesis of E- and Z-Configured 1,4-Dienes by Photoredox/Nickel Dual Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 183-187	3.6	10
14	Organic-photoredox-catalyzed three-component sulfonylative pyridylation of styrenes <i>RSC Advances</i> , 2020 , 11, 142-146	3.7	7
13	Dual Photoredox-/Palladium-Catalyzed Cross-Electrophile Couplings of Polyfluoroarenes with Aryl Halides and Triflates. <i>Organometallics</i> , 2021 , 40, 2246-2252	3.8	7
12	Radical 1,2-addition of bromoarenes to alkynes via dual photoredox and nickel catalysis. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 2924-2931	5.2	6
11	Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes. <i>Chinese Journal of Organic Chemistry</i> , 2022 , 42, 1	3	5
10	Borates as a Traceless Activation Group for Intermolecular Alkylarylation of Ethylene through Photoredox/Nickel Dual Catalysis. <i>Synlett</i> , 2021 , 32, 1519-1524	2.2	5
9	Synergistic Catalysis for Stereodivergent Synthesis of trans- and cis-Skipped Dienes. <i>Synlett</i> , 2020 , 31, 1741-1746	2.2	5

LIST OF PUBLICATIONS

8	Synthesis of I-fluoroalkylated allylic amines derivatives via palladium-catalyzed Overman rearrangement. <i>Tetrahedron Letters</i> , 2012 , 53, 6853-6857	2	4	
7	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26511-26517	16.4	4	
6	Reductive hydrobenzylation of terminal alkynes photoredox and nickel dual catalysis. <i>Chemical Communications</i> , 2021 , 57, 9414-9417	5.8	3	
5	Selective Fluoromethyl Couplings of Alkynes via Nickel Catalysis* <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	2	
4	Silver-Enabled General Radical Difluoromethylation Reaction with TMSCF2H. <i>Angewandte Chemie</i> , 2021 , 133, 4346-4352	3.6	2	
3	Ligand-accelerated, branch-selective oxidative cyanation of alkenes. <i>Science Bulletin</i> , 2018 , 63, 1479-14	8 4 0.6	1	
2	Photoinduced triiodide-mediated [3 + 2] cycloaddition of N-tosyl aziridines and alkenes. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 2196-2202	5.2	О	
1	Metallaphotoredox-Enabled Intermolecular Carbobromination of Alkynes with Alkenyl Bromides. <i>Advanced Synthesis and Catalysis</i> , 2022 , 364, 1239-1244	5.6	0	