
Stefano Varas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1422209/publications.pdf Version: 2024-02-01

STEEANO VADAS

#	Article	IF	CITATIONS
1	Rare-earth activated SnO2 photoluminescent thin films on flexible glass: Synthesis, deposition and characterization. Optical Materials, 2022, 124, 111978.	3.6	13
2	Sol-gel-derived transparent glass-ceramics for photonics. Optical Materials, 2022, 130, 112577.	3.6	5
3	Assessment of SnO2-nanocrystal-based luminescent glass-ceramic waveguides for integrated photonics. Ceramics International, 2021, 47, 5534-5541.	4.8	17
4	From flexible electronics to flexible photonics: A brief overview. Optical Materials, 2021, 115, 111011.	3.6	34
5	Design, fabrication and assessment of an optomechanical sensor for pressure and vibration detection using flexible glass multilayers. Optical Materials, 2021, 115, 111023.	3.6	7
6	Tungsten oxide films by radio-frequency magnetron sputtering for near-infrared photonics. Optical Materials: X, 2021, 12, 100093.	0.8	0
7	SiO2-SnO2:Er3+ planar waveguides: Highly photorefractive glass-ceramics. Optical Materials: X, 2020, 7, 100056.	0.8	3
8	Low-Threshold Coherent Emission at 1.5 µm from Fully Er3+ Doped Monolithic 1D Dielectric Microcavity Fabricated Using Radio Frequency Sputtering. Ceramics, 2019, 2, 74-85.	2.6	4
9	Fabrication, modelling and assessment of hybrid 1-D elastic Fabry Perot microcavity for mechanical sensing applications. Ceramics International, 2019, 45, 7785-7788.	4.8	16
10	SiO2-SnO2:Er3+ Glass-Ceramic Monoliths. Applied Sciences (Switzerland), 2018, 8, 1335.	2.5	22
11	One-dimensional disordered photonic structures with two or more materials. , 2018, , .		0
12	Fabrication by rf-sputtering and assessment of dielectric Er3+ doped monolithic 1-D microcavity for coherent emission at 1.5 um. , 2018, , .		0
13	Tailoring the optical properties of one-dimensional (1D) photonic structures. , 2017, , .		0
14	Glass and glass-ceramic photonic systems. , 2017, , .		2
15	Determination of reverse cross-relaxation process constant in Tm-doped glass by ^3H_4 fluorescence decay tail fitting. Optical Materials Express, 2017, 7, 3760.	3.0	10
16	Glass-based 1-D dielectric microcavities. Optical Materials, 2016, 61, 11-14.	3.6	5
17	Optical field enhanced nonlinear absorption and optical limiting properties of 1-D dielectric photonic crystal with ZnO defect. Optical Materials, 2015, 50, 229-233.	3.6	45
18	Optical properties of one-dimensional disordered multilayer photonic structures. , 2015, , .		3

Optical properties of one-dimensional disordered multilayer photonic structures. , 2015, , . 18

STEFANO VARAS

#	Article	IF	CITATIONS
19	Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating. Ceramics International, 2015, 41, 8655-8659.	4.8	30
20	Glass-ceramics for photonics: Laser material processing. , 2015, , .		1
21	Sol–gel-derived photonic structures handling erbium ions luminescence. Optical and Quantum Electronics, 2015, 47, 117-124.	3.3	15
22	Disorder in Photonic Structures Induced by Random Layer Thickness. Science of Advanced Materials, 2015, 7, 1207-1212.	0.7	42
23	RF-sputtering derived dielectric 1-D photonic crystal activated with Er3+ ions. , 2014, , .		0
24	GeO2glass ceramic planar waveguides fabricated by RF-sputtering. , 2014, , .		1
25	Glass-based confined structures fabricated by sol-gel and radio frequency sputtering. Optical Engineering, 2014, 53, 071804.	1.0	1
26	Glass-Based Sub-Wavelength Photonic Structures. , 2013, , .		0
27	Tailored spectroscopic and optical properties in rare earth-activated glass-ceramics planar waveguides. , 2013, , .		0
28	High quality factor 1-D Er^3+-activated dielectric microcavity fabricated by RF-sputtering. Optics Express, 2012, 20, 21214.	3.4	64
29	High quality factor dielectric multilayer structures fabricated by rf-sputtering. Proceedings of SPIE, 2012, , .	0.8	1
30	Spherical resonators coated by glass and glass-ceramic films. Proceedings of SPIE, 2012, , .	0.8	1
31	Pr3+–Yb3+â€codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission. Journal of Non-Crystalline Solids, 2012, 358, 2695-2700.	3.1	13
32	Nonlinear enhancement in 1-D photonic crystal with ZnO defect fabricated by rf sputtering. , 2012, , .		0
33	Sol–gel-derived photonic structures: fabrication, assessment, and application. Journal of Sol-Gel Science and Technology, 2011, 60, 408-425.	2.4	54
34	Down-converter based on rare earth doped fluoride glass to improve Si-based solar cell efficiency. Proceedings of SPIE, 2011, , .	0.8	2
35	Rare-earth-activated glasses for solar energy conversion. , 2011, , .		3
36	Magnetoresistive magnetometer with improved bandwidth and response characteristics. Review of Scientific Instruments, 2005, 76, 065106.	1.3	21

#	Article	IF	CITATIONS
37	Glass-Based Photonic Crystals: From Fabrication to Applications. Advances in Science and Technology, 0, , .	0.2	0