
Marta Giralt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1421981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The endocrine role of brown adipose tissue: An update on actors and actions. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 31-41.	2.6	70
2	Increased Circulating Levels of Growth Differentiation Factor 15 in Association with Metabolic Disorders in People Living with HIV Receiving Combined Antiretroviral Therapy. Journal of Clinical Medicine, 2022, 11, 549.	1.0	2
3	Specific adipose tissue Lbp gene knockdown prevents diet-induced body weight gain, impacting fat accretion-related gene and protein expression. Molecular Therapy - Nucleic Acids, 2022, 27, 870-879.	2.3	4
4	Adipose tissue aging partially accounts for fat alterations in HIV lipodystrophy. Adipocyte, 2022, 11, 143-152.	1.3	1
5	Downregulation of peripheral lipopolysaccharide binding protein impacts on perigonadal adipose tissue only in female mice. Biomedicine and Pharmacotherapy, 2022, 151, 113156.	2.5	1
6	FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Molecular Metabolism, 2021, 43, 101113.	3.0	18
7	The chemokine CXCL14 is negatively associated with obesity and concomitant type-2 diabetes in humans. International Journal of Obesity, 2021, 45, 706-710.	1.6	17
8	Adipose tissue knockdown of lysozyme reduces local inflammation and improves adipogenesis in high-fat diet-fed mice. Pharmacological Research, 2021, 166, 105486.	3.1	12
9	Levels of Î ² -klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of FGF21. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E822-E834.	1.8	14
10	FGF21 serum levels are related to insulin resistance, metabolic changes and obesity in Mexican people living with HIV (PLWH). PLoS ONE, 2021, 16, e0252144.	1.1	9
11	A Differential Pattern of Batokine Expression in Perivascular Adipose Tissue Depots From Mice. Frontiers in Physiology, 2021, 12, 714530.	1.3	7
12	Cardiotrophinâ€1 contributes to metabolic adaptations through the regulation of lipid metabolism and to the fastingâ€induced fatty acid mobilization. FASEB Journal, 2020, 34, 15875-15887.	0.2	1
13	Potential role of the melanocortin signaling system interference in the excess weight gain associated to some antiretroviral drugs in people living with HIV. International Journal of Obesity, 2020, 44, 1970-1973.	1.6	19
14	The kallikrein–kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nature Communications, 2020, 11, 2132.	5.8	18
15	Brown Adipocytes Secrete GDF15 in Response to Thermogenic Activation. Obesity, 2019, 27, 1606-1616.	1.5	62
16	GPR120 controls neonatal brown adipose tissue thermogenic induction. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E742-E750.	1.8	12
17	Parkin controls brown adipose tissue plasticity in response to adaptive thermogenesis. EMBO Reports, 2019, 20, .	2.0	29
18	Secretory Proteome of Brown Adipocytes in Response to cAMP-Mediated Thermogenic Activation. Frontiers in Physiology, 2019, 10, 67.	1.3	15

#	Article	IF	CITATIONS
19	Lipodystrophy. , 2019, , 482-495.		3
20	New insights into the secretory functions of brown adipose tissue. Journal of Endocrinology, 2019, 243, R19-R27.	1.2	126
21	Effects of docosahexanoic acid supplementation on inflammatory and subcutaneous adipose tissue gene expression in HIV-infected patients on combination antiretroviral therapy (cART). A sub-study of a randomized, double-blind, placebo-controlled study. Cytokine, 2018, 105, 73-79.	1.4	13
22	Autophagic control of cardiac steatosis through FGF21 in obesity-associated cardiomyopathy. International Journal of Cardiology, 2018, 260, 163-170.	0.8	35
23	Brown Adipokines. Handbook of Experimental Pharmacology, 2018, 251, 239-256.	0.9	13
24	P119Cardiac remodeling in response to cold and deacclimation: role of autophagy. Cardiovascular Research, 2018, 114, S30-S31.	1.8	0
25	Toward an Understanding of How Immune Cells Control Brown and Beige Adipobiology. Cell Metabolism, 2018, 27, 954-961.	7.2	155
26	Lactate induces expression and secretion of fibroblast growth factor-21 by muscle cells. Endocrine, 2018, 61, 165-168.	1.1	6
27	Effects of docosahexanoic acid on metabolic and fat parameters in HIV-infected patients on cART: A randomized, double-blind, placebo-controlled study. Clinical Nutrition, 2018, 37, 1340-1347.	2.3	5
28	Aging is associated with increased FGF21 levels but unaltered FGF21 responsiveness in adipose tissue. Aging Cell, 2018, 17, e12822.	3.0	28
29	Reciprocal Effects of Antiretroviral Drugs Used To Treat HIV Infection on the Fibroblast Growth Factor $21/\hat{I}^2$ -Klotho System. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	11
30	CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metabolism, 2018, 28, 750-763.e6.	7.2	164
31	Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal of Internal Medicine, 2018, 284, 492-504.	2.7	189
32	FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clinical Nutrition, 2017, 36, 861-868.	2.3	123
33	High FGF21 levels are associated with altered bone homeostasis in HIV-1-infected patients. Metabolism: Clinical and Experimental, 2017, 71, 163-170.	1.5	15
34	Fgf21 is required for cardiac remodeling in pregnancy. Cardiovascular Research, 2017, 113, 1574-1584.	1.8	32
35	The Lives and Times of Brown Adipokines. Trends in Endocrinology and Metabolism, 2017, 28, 855-867.	3.1	75
36	Transcriptional regulation of the uncoupling protein-1 gene. Biochimie, 2017, 134, 86-92.	1.3	77

#	Article	IF	CITATIONS
37	Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 2017, 13, 26-35.	4.3	493
38	Mitochondrial Uncoupling and the Regulation of Glucose Homeostasis. Current Diabetes Reviews, 2017, 13, 386-394.	0.6	44
39	Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines. Antiviral Research, 2016, 132, 59-65.	1.9	45
40	Obesity and Cardiac Microvascular Function496Roux-en-y gastric bypass surgery reverses obesity-induced vascular dysfunction by blunting jnk2-endothelial activation497Involvement of the Fgf21 system in obesity-associated cardiomyopathy498Is low ATM protein responsible for myocardial insulin resistance associated with obesity?. Cardiovascular Research, 2016, 111, S88-S89.	1.8	0
41	Hormonal and nutritional signalling in the control of brown and beige adipose tissue activation and recruitment. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 515-525.	2.2	13
42	Improved adipose tissue function with initiation of protease inhibitor-only ART. Journal of Antimicrobial Chemotherapy, 2016, 71, 3212-3221.	1.3	3
43	The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nature Communications, 2016, 7, 13479.	5.8	180
44	Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia, 2016, 59, 2208-2218.	2.9	41
45	Thermogenic activation represses autophagy in brown adipose tissue. International Journal of Obesity, 2016, 40, 1591-1599.	1.6	45
46	C/EBPβ is required in pregnancy-induced cardiac hypertrophy. International Journal of Cardiology, 2016, 202, 819-828.	0.8	15
47	Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Scientific Reports, 2015, 5, 13717.	1.6	31
48	Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovascular Research, 2015, 106, 19-31.	1.8	209
49	Circulating fibroblast growth factor 23 (FGF23) levels are associated with metabolic disturbances and fat distribution but not cardiovascular risk in HIV-infected patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 1825-1832.	1.3	12
50	The Beneficial Effects of Brown Fat Transplantation: Further Evidence of an Endocrine Role of Brown Adipose Tissue. Endocrinology, 2015, 156, 2368-2370.	1.4	32
51	Adipokines and the Endocrine Role of Adipose Tissues. Handbook of Experimental Pharmacology, 2015, 233, 265-282.	0.9	61
52	Fibroblast growth factor-21, energy balance and obesity. Molecular and Cellular Endocrinology, 2015, 418, 66-73.	1.6	144
53	Sirt1 mediates the effects of a short-term high-fat diet on the heart. Journal of Nutritional Biochemistry, 2015, 26, 1328-1337.	1.9	13
54	Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. International Journal of Obesity, 2015, 39, 121-129.	1.6	165

#	Article	IF	CITATIONS
55	Thermogenic brown and beige/brite adipogenesis in humans. Annals of Medicine, 2015, 47, 169-177.	1.5	68
56	The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages. PLoS ONE, 2015, 10, e0136571.	1.1	14
57	Effects of Switching from Stavudine to Raltegravir on Subcutaneous Adipose Tissue in HIV-Infected Patients with HIV/HAART-Associated Lipodystrophy Syndrome (HALS). A Clinical and Molecular Study. PLoS ONE, 2014, 9, e89088.	1.1	23
58	P754Involvement of the transcription factor C/EBPbeta in pregnancy-induced cardiac hypertrophy. Cardiovascular Research, 2014, 103, S138.2-S138.	1.8	0
59	FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochemical Journal, 2014, 463, 191-199.	1.7	58
60	A 48-Week Study of Fat Molecular Alterations in HIV Naive Patients Starting Tenofovir/Emtricitabine With Lopinavir/Ritonavir or Efavirenz. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 66, 457-465.	0.9	12
61	Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β-cells. International Journal of Obesity, 2014, 38, 1545-1554.	1.6	74
62	Fibroblast Growth Factorâ€21 and the Beneficial Effects of Longâ€Chain nâ€3 Polyunsaturated Fatty Acids. Lipids, 2014, 49, 1081-1089.	0.7	22
63	Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism: Clinical and Experimental, 2014, 63, 312-317.	1.5	79
64	P612Involvement of the cardiomyokine FGF21 in protection against oxidative stress damage in the heart. Cardiovascular Research, 2014, 103, S110.5-S111.	1.8	1
65	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	2.9	109
66	Maraviroc reduces cytokine expression and secretion in human adipose cells without altering adipogenic differentiation. Cytokine, 2013, 61, 808-815.	1.4	24
67	White, Brown, Beige/Brite: Different Adipose Cells for Different Functions?. Endocrinology, 2013, 154, 2992-3000.	1.4	437
68	Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nature Communications, 2013, 4, 2019.	5.8	285
69	Hypertrophied Facial Fat in An HIV-1-Infected Patient after Autologous Transplantation from â€ [~] Buffalo Hump' Retains a Partial Brown-Fat-Like Molecular Signature. Antiviral Therapy, 2013, 18, 1-5.	0.6	2
70	Differentially Altered Molecular Signature of Visceral Adipose Tissue in HIV-1–Associated Lipodystrophy. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 64, 142-148.	0.9	33
71	Hiv-1 Tat Protein Impairs Adipogenesis and Induces the Expression and Secretion of Proinflammatory Cytokines in Human Sgbs Adipocytes. Antiviral Therapy, 2012, 17, 529-540.	0.6	28
72	Pref-1 in brown adipose tissue: specific involvement in brown adipocyte differentiation and regulatory role of C/EBPÎ′. Biochemical Journal, 2012, 443, 799-810.	1.7	28

#	Article	IF	CITATIONS
73	Effects of Rilpivirine on Human Adipocyte Differentiation, Gene Expression, and Release of Adipokines and Cytokines. Antimicrobial Agents and Chemotherapy, 2012, 56, 3369-3375.	1.4	30
74	Reduced Levels of Serum FGF19 and Impaired Expression of Receptors for Endocrine FGFs in Adipose Tissue From HIV-Infected Patients. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 61, 527-534.	0.9	18
75	Adipogenic/Lipid, Inflammatory, and Mitochondrial Parameters in Subcutaneous Adipose Tissue of Untreated HIV-1–Infected Long-Term Nonprogressors. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 61, 131-137.	0.9	24
76	Peroxisome Proliferator-Activated Receptors-α and -γ, and cAMP-Mediated Pathways, Control Retinol-Binding Protein-4 Gene Expression in Brown Adipose Tissue. Endocrinology, 2012, 153, 1162-1173.	1.4	47
77	Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: A role for Sirt1-Mef2 in adult heart. Journal of Molecular and Cellular Cardiology, 2012, 53, 521-531.	0.9	77
78	TNF-α Represses β-Klotho Expression and Impairs FGF21 Action in Adipose Cells: Involvement of JNK1 in the FGF21 Pathway. Endocrinology, 2012, 153, 4238-4245.	1.4	176
79	Adipose tissue biology and HIV-infection. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 487-499.	2.2	62
80	Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice. PLoS ONE, 2011, 6, e29691.	1.1	17
81	A study of fatty acid binding protein 4 in HIV-1 infection and in combination antiretroviral therapy-related metabolic disturbances and lipodystrophy. HIV Medicine, 2011, 12, 428-437.	1.0	15
82	Effects of nevirapine and efavirenz on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. Antiviral Research, 2011, 91, 112-119.	1.9	43
83	Quality assessment of human mitochondrial DNA quantification: MITONAUTS, an international multicentre survey. Mitochondrion, 2011, 11, 520-527.	1.6	29
84	Thermogenic Activation Induces FGF21 Expression and Release in Brown Adipose Tissue. Journal of Biological Chemistry, 2011, 286, 12983-12990.	1.6	512
85	Sirt1 acts in association with PPARÂ to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovascular Research, 2011, 90, 276-284.	1.8	258
86	Peroxisome Proliferator-activated Receptor-γ Coactivator-1α Controls Transcription of the Sirt3 Gene, an Essential Component of the Thermogenic Brown Adipocyte Phenotype. Journal of Biological Chemistry, 2011, 286, 16958-16966.	1.6	181
87	Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. Journal of Biological Chemistry, 2011, 286, 43112-43122.	1.6	256
88	Serum FGF21 levels are elevated in association with lipodystrophy, insulin resistance and biomarkers of liver injury in HIV-1-infected patients. Aids, 2010, 24, 2629-2637.	1.0	47
89	HIV Type-1 Transgene Expression in Mice Alters Adipose Tissue and Adipokine Levels: Towards a Rodent Model of HIV Type-1 Lipodystrophy. Antiviral Therapy, 2010, 15, 1021-1028.	0.6	9
90	Differential Effects of Efavirenz and Lopinavir/Ritonavir on Human Adipocyte Differentiation, Gene Expression and Release of Adipokines and Pro-Inflammatory Cytokines Current HIV Research, 2010, 8, 545-553.	0.2	48

#	Article	IF	CITATIONS
91	Drug-induced lipotoxicity: Lipodystrophy associated with HIV-1 infection and antiretroviral treatment. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 392-399.	1.2	86
92	Hepatic FGF21 Expression Is Induced at Birth via PPARα in Response to Milk Intake and Contributes to Thermogenic Activation of Neonatal Brown Fat. Cell Metabolism, 2010, 11, 206-212.	7.2	326
93	Uridine Metabolism in HIV-1-Infected Patients: Effect of Infection, of Antiretroviral Therapy and of HIV-1/ART-Associated Lipodystrophy Syndrome. PLoS ONE, 2010, 5, e13896.	1.1	11
94	Lipotoxicity on the Basis of Metabolic Syndrome and Lipodystrophy in HIV-1-Infected Patients Under Antiretroviral Treatment. Current Pharmaceutical Design, 2010, 16, 3372-3378.	0.9	17
95	HIV-1 Infection and the PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi>-Dependent Control of Adipose Tissue Physiology. PPAR Research, 2009, 2009, 1-8.</mml:math 	1.1	14
96	The Importance of Brown Adipose Tissue. New England Journal of Medicine, 2009, 361, 415-421.	13.9	55
97	SIRT1 Controls the Transcription of the Peroxisome Proliferator-activated Receptor-γ Co-activator-1α (PGC-1α) Gene in Skeletal Muscle through the PGC-1α Autoregulatory Loop and Interaction with MyoD. Journal of Biological Chemistry, 2009, 284, 21872-21880.	1.6	184
98	Mitochondrial DNA: An Upâ€and oming Actor in White Adipose Tissue Pathophysiology. Obesity, 2009, 17, 1814-1820.	1.5	33
99	Genetic and Functional Mitochondrial Assessment of HIV-Infected Patients Developing HAART-Related Hyperlactatemia. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 52, 443-451.	0.9	26
100	Pharmacological and Gene Modification-Based Models for Studying the Impact of Perinatal Metabolic Disturbances in Adult Life. Advances in Experimental Medicine and Biology, 2009, 646, 141-148.	0.8	4
101	Impaired expression of mitochondrial and adipogenic genes in adipose tissue from a patient with acquired partial lipodystrophy (Barraquer-Simons syndrome): a case report. Journal of Medical Case Reports, 2008, 2, 284.	0.4	14
102	Differential gene expression indicates that â€~buffalo hump' is a distinct adipose tissue disturbance in HIV-1-associated lipodystrophy. Aids, 2008, 22, 575-584.	1.0	47
103	PPARs in the Control of Uncoupling Proteins Gene Expression. PPAR Research, 2007, 2007, 1-12.	1.1	163
104	HIV-1-Infected Long-Term Non-Progressors have Milder Mitochondrial Impairment and Lower Mitochondrially-Driven Apoptosis in Peripheral Blood Mononuclear Cells than Typical Progressors. Current HIV Research, 2007, 5, 467-473.	0.2	25
105	Reversible Inhibition of Mitochondrial Protein Synthesis during Linezolid-Related Hyperlactatemia. Antimicrobial Agents and Chemotherapy, 2007, 51, 962-967.	1.4	114
106	Uncoupling Protein-2 Controls Adiponectin Gene Expression in Adipose Tissue Through the Modulation of Reactive Oxygen Species Production. Diabetes, 2007, 56, 1042-1050.	0.3	87
107	SIRT1 Is Involved in Glucocorticoid-mediated Control of Uncoupling Protein-3 Gene Transcription. Journal of Biological Chemistry, 2007, 282, 34066-34076.	1.6	74
108	Mechanisms of antiretroviral-induced mitochondrial dysfunction in adipocytes and adipose tissue: in-vitro, animal and human adipose tissue studies. Current Opinion in HIV and AIDS, 2007, 2, 261-267.	1.5	7

#	Article	IF	CITATIONS
109	PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochemical and Biophysical Research Communications, 2007, 354, 1021-1027.	1.0	110
110	Lipodystrophy in HIV 1-infected patients: lessons for obesity research. International Journal of Obesity, 2007, 31, 1763-1776.	1.6	60
111	Altered expression of nucleoside transporter genes (SLC28 and SLC29) in adipose tissue from HIV-1-infected patients. Antiviral Therapy, 2007, 12, 853-63.	0.6	12
112	Altered Expression of Nucleoside Transporter Genes (SLC28 and SLC29) in Adipose Tissue from HIV-1–Infected Patients. Antiviral Therapy, 2007, 12, 853-864.	0.6	21
113	Altered expression of master regulatory genes of adipogenesis in lipomas from patients bearing tRNALys point mutations in mitochondrial DNA. Molecular Genetics and Metabolism, 2006, 89, 283-285.	0.5	21
114	In Vitro Cytotoxicity and Mitochondrial Toxicity of Tenofovir Alone and in Combination with Other Antiretrovirals in Human Renal Proximal Tubule Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3824-3832.	1.4	63
115	Thiazolidinediones and Rexinoids Induce Peroxisome Proliferator-Activated Receptor-Coactivator (PGC)-1α Gene Transcription: An Autoregulatory Loop Controls PGC-1α Expression in Adipocytes via Peroxisome Proliferator-Activated Receptor-γ Coactivation. Endocrinology, 2006, 147, 2829-2838.	1.4	160
116	HIV-1 infection alters gene expression in adipose tissue, which contributes to HIV- 1/HAART-associated lipodystrophy. Antiviral Therapy, 2006, 11, 729-40.	0.6	60
117	HIV-1 Infection Alters Gene Expression in Adipose Tissue, Which Contributes to HIV-1/Haart-Associated Lipodystrophy. Antiviral Therapy, 2006, 11, 729-740.	0.6	127
118	Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPβ. Biochemical Journal, 2005, 389, 47-56.	1.7	50
119	Lithium inhibits brown adipocyte differentiation. FEBS Letters, 2005, 579, 1670-1674.	1.3	12
120	Lipodystrophy associated with highly active anti-retroviral therapy for HIV infection: the adipocyte as a target of anti-retroviral-induced mitochondrial toxicity. Trends in Pharmacological Sciences, 2005, 26, 88-93.	4.0	77
121	Reverse transcriptase inhibitors alter uncoupling protein-1 and mitochondrial biogenesis in brown adipocytes. Antiviral Therapy, 2005, 10, 515-26.	0.6	7
122	Reverse Transcriptase Inhibitors Alter Uncoupling Protein-1 and Mitochondrial Biogenesis in Brown Adipocytes. Antiviral Therapy, 2005, 10, 515-526.	0.6	27
123	The Developmental Regulation of Peroxisome Proliferator-Activated Receptor-Î ³ Coactivator-1α Expression in the Liver Is Partially Dissociated from the Control of Gluconeogenesis and Lipid Catabolism. Endocrinology, 2004, 145, 4268-4277.	1.4	23
124	Retinoids and Retinoid Receptors in the Control of Energy Balance: Novel Pharmacological Strategies in Obesity and Diabetes. Current Medicinal Chemistry, 2004, 11, 795-805.	1.2	81
125	Upregulatory Mechanisms Compensate for Mitochondrial DNA Depletion in Asymptomatic Individuals Receiving Stavudine Plus Didanosine. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 37, 1550-1555.	0.9	51
126	Uncoupling protein 1 gene expression implicates brown adipocytes in highly active antiretroviral therapy-associated lipomatosis. Aids, 2004, 18, 959-960.	1.0	24

#	Article	IF	CITATIONS
127	Functional Relationship between MyoD and Peroxisome Proliferator-Activated Receptor-Dependent Regulatory Pathways in the Control of the Human Uncoupling Protein-3 Gene Transcription. Molecular Endocrinology, 2003, 17, 1944-1958.	3.7	64
128	Mitochondrial Biogenesis and Thyroid Status Maturation in Brown Fat Require CCAAT/Enhancer-binding Protein α. Journal of Biological Chemistry, 2002, 277, 21489-21498.	1.6	50
129	Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation. Biochemical Journal, 2002, 362, 61.	1.7	22
130	Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation. Biochemical Journal, 2002, 362, 61-69.	1.7	43
131	Epitope Mapping of Mitochondrial Adenine Nucleotide Translocase-1 in Idiopathic Dilated Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2002, 34, 571-582.	0.9	6
132	Phytanic acid, but not pristanic acid, mediates the positive effects of phytol derivatives on brown adipocyte differentiation. FEBS Letters, 2002, 517, 83-86.	1.3	19
133	Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors. Cellular and Molecular Life Sciences, 2002, 59, 1934-1944.	2.4	23
134	The chlorophyll-derived metabolite phytanic acid induces white adipocyte differentiation. International Journal of Obesity, 2002, 26, 1277-1280.	1.6	39
135	Differential regulation of expression of genes encoding uncoupling proteins 2 and 3 in brown adipose tissue during lactation in mice. Biochemical Journal, 2001, 355, 105-111.	1.7	30
136	Gene expression of leptin and uncoupling proteins: molecular end-points of fetal development. Biochemical Society Transactions, 2001, 29, 76-80.	1.6	10
137	Peroxisome Proliferator-activated Receptor α Activates Transcription of the Brown Fat Uncoupling Protein-1 Gene. Journal of Biological Chemistry, 2001, 276, 1486-1493.	1.6	302
138	Differential regulation of expression of genes encoding uncoupling proteins 2 and 3 in brown adipose tissue during lactation in mice. Biochemical Journal, 2001, 355, 105.	1.7	17
139	Gene expression of leptin and uncoupling proteins: molecular end-points of fetal development. Biochemical Society Transactions, 2001, 29, 76-80.	1.6	3
140	Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids. Biochemical Journal, 2000, 345, 91.	1.7	12
141	Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids. Biochemical Journal, 2000, 345, 91-97.	1.7	56
142	Impaired expression of the uncoupling protein-3 gene in skeletal muscle during lactation: fibrates and troglitazone reverse lactation-induced downregulation of the uncoupling protein-3 gene Diabetes, 2000, 49, 1224-1230.	0.3	43
143	The human uncoupling proteinâ€3 gene promoter requires myod and is induced by retinoic acid in muscle cells. FASEB Journal, 2000, 14, 2141-2143.	0.2	50
144	Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids. Biochemical Journal, 2000, 345 Pt 1, 91-7.	1.7	21

#	Article	IF	CITATIONS
145	Activators of peroxisome proliferator-activated receptor-alpha induce the expression of the uncoupling protein-3 gene in skeletal muscle: a potential mechanism for the lipid intake-dependent activation of uncoupling protein-3 gene expression at birth. Diabetes, 1999, 48, 1217-1222.	0.3	148
146	Retinoids and adipose tissues: metabolism, cell differentiation and gene expression. International Journal of Obesity, 1999, 23, 1-6.	1.6	235
147	Opposite regulation of PPAR-α and -γ gene expression by both their ligands and retinoic acid in brown adipocytes. Molecular and Cellular Endocrinology, 1999, 154, 101-109.	1.6	59
148	Uncoupling protein-3 gene expression in skeletal muscle during development is regulated by nutritional factors that alter circulating non-esterified fatty acids. FEBS Letters, 1999, 453, 205-209.	1.3	55
149	Muscle/heart isoform of mitochondrial adenine nucleotide translocase (ANT1) is transiently expressed during perinatal development in rat liver. FEBS Letters, 1998, 421, 213-216.	1.3	7
150	9-cisRetinoic acid induces the expression of the uncoupling protein-2 gene in brown adipocytes. FEBS Letters, 1998, 441, 447-450.	1.3	27
151	Differential Regulation of Uncoupling Protein-2 and Uncoupling Protein-3 Gene Expression in Brown Adipose Tissue during Development and Cold Exposure. Biochemical and Biophysical Research Communications, 1998, 243, 224-228.	1.0	53
152	Dominant Negative Regulation by c-Jun of Transcription of the Uncoupling Protein-1 Gene through a Proximal cAMP-Regulatory Element: A Mechanism for Repressing Basal and Norepinephrine-Induced Expression of the Gene before Brown Adipocyte Differentiation. Molecular Endocrinology, 1998, 12, 1023-1037.	3.7	63
153	Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory factor-2/GA-binding protein is responsible for the transcriptional regulation of the gene for the mitochondrial ATP synthase β subunit. Biochemical Journal, 1998, 331, 121-127.	1.7	47
154	Influence of thyroid hormones on the human ATP synthase β-subunit gene promoter. Molecular and Cellular Biochemistry, 1996, 154, 107-111.	1.4	10
155	Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat. Biochemical Journal, 1995, 308, 749-752.	1.7	21
156	A Novel Regulatory Pathway of Brown Fat Thermogenesis. Journal of Biological Chemistry, 1995, 270, 5666-5673.	1.6	177
157	Metabolic Regulation of Gene Transcription ,. Journal of Nutrition, 1994, 124, 1533S-1539S.	1.3	11
158	Inhibition of Iodothyronine 5â€2-Deiodinase by Iopanoic Acid Does Not Block Nuclear T3 Accumulation During Rat Fetal Development. Pediatric Research, 1994, 35, 91-95.	1.1	3
159	CCAAT/Enhancer Binding-Proteins α and β Are Transcriptional Activators of the Brown Fat Uncoupling Protein Gene Promoter. Biochemical and Biophysical Research Communications, 1994, 198, 653-659.	1.0	67
160	Identification of Tissue-Specific Protein Binding Domains in the 5′-Proximal Regulatory Region of the Rat Mitochondrial Brown Fat Uncoupling Protein Gene. Biochemical and Biophysical Research Communications, 1994, 204, 867-873.	1.0	12
161	CCAAT/enhancer-binding proteins <i>î±</i> and <i>î²</i> in brown adipose tissue: evidence for a tissue-specific pattern of expression during development. Biochemical Journal, 1994, 302, 695-700.	1.7	39
162	ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit Journal of Biological Chemistry, 1994, 269, 32649-32654.	1.6	37

#	Article	IF	CITATIONS
163	ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit. Journal of Biological Chemistry, 1994, 269, 32649-54.	1.6	37
164	Ontogeny of thyroid hormone receptors and c-erbA expression during brown adipose tissue development: evidence of fetal acquisition of the mature thyroid status Endocrinology, 1993, 132, 1913-1920.	1.4	22
165	Enhanced Glutathione S-transferase Activity and Glutathione Content in Human Bladder Cancer. Followup Study: Influence of Smoking. Journal of Urology, 1993, 149, 1452-1454.	0.2	32
166	Opposing actions of Fos and Jun on transcription of the phosphoenolpyruvate carboxykinase (GTP) gene. Dominant negative regulation by Fos. Journal of Biological Chemistry, 1992, 267, 18133-9.	1.6	56
167	Identification of a thyroid hormone response element in the phosphoenolpyruvate carboxykinase (GTP) gene. Evidence for synergistic interaction between thyroid hormone and cAMP cis-regulatory elements Journal of Biological Chemistry, 1991, 266, 21991-21996.	1.6	88
168	Identification of a thyroid hormone response element in the phosphoenolpyruvate carboxykinase (GTP) gene. Evidence for synergistic interaction between thyroid hormone and cAMP cis-regulatory elements. Journal of Biological Chemistry, 1991, 266, 21991-6.	1.6	69
169	Ontogeny and perinatal modulation of gene expression in rat brown adipose tissue. Unaltered iodothyronine 5'-deiodinase activity is necessary for the response to environmental temperature at birth. FEBS Journal, 1990, 193, 297-302.	0.2	72
170	Lipoprotein lipase mRNA expression in brown adipose tissue: translational and/or posttranslational events are involved in the modulation of enzyme activity. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1048, 270-273.	2.4	22
171	Uncoupling Protein mRNA Expression during the Perinatal Period of the Rat. , 1990, , 137-140.		0
172	Iodothyronine 5′-deiodinase activity as an early event of prenatal brown-fat differentiation in bovine development. Biochemical Journal, 1989, 259, 555-559.	1.7	37
173	Adaptative decrease in expression of the mRNA for uncoupling protein and subunit II of cytochrome <i>c</i> oxidase in rat brown adipose tissue during pregnancy and lactation. Biochemical Journal, 1989, 263, 965-968.	1.7	28
174	Evidence for a differential physiological modulation of brown fat iodothyronine 5′-deiodinase activity in the perinatal period. Biochemical and Biophysical Research Communications, 1988, 156, 493-499.	1.0	16
175	Iodothyronine 5′-deiodinase activity and thyroid hormone content in brown adipose tissue during the breeding cycle of the rat. Biochemical Journal, 1988, 255, 457-461.	1.7	9
176	Changes in Liver Iodothyronine 5′-Deiodinase Activity During Pregnancy and Lactation in the Rat. Hormone and Metabolic Research, 1987, 19, 510-511.	0.7	10
177	Impaired basal and noradrenaline-induced iodothyronine 5′-deiodinase activity in brown adipose tissue from pregnant and lactating rats. Biochemical and Biophysical Research Communications, 1986, 138, 1315-1321.	1.0	19
178	Ontogeny of thyroid hormone receptors and c-erbA expression during brown adipose tissue development: evidence of fetal acquisition of the mature thyroid status. , 0, .		7
179	FGF21, irisin and other novel players in endocrine metabolic regulation. Endocrine Abstracts, 0, , .	0.0	0
180	The armadillo-repeat containing X-linked protein 3, ARMCX3, is a negative regulator of the browning of adipose tissue associated with obesity. International Journal of Obesity, 0, , .	1.6	0