Takashi Fujishiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1421698/publications.pdf

Version: 2024-02-01

430874 454955 34 922 18 30 citations h-index g-index papers 41 41 41 693 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrogen Peroxide Dependent Monooxygenations by Tricking the Substrate Recognition of Cytochrome P450BS \hat{I}^2 . Angewandte Chemie - International Edition, 2007, 46, 3656-3659.	13.8	132
2	Crystal Structure of H2O2-dependent Cytochrome P450SPα with Its Bound Fatty Acid Substrate. Journal of Biological Chemistry, 2011, 286, 29941-29950.	3.4	103
3	Reconstitution of [Fe]-hydrogenase using model complexes. Nature Chemistry, 2015, 7, 995-1002.	13.6	92
4	Crystal Structures of [Fe]â€Hydrogenase in Complex with Inhibitory Isocyanides: Implications for the H ₂ â€Activation Site. Angewandte Chemie - International Edition, 2013, 52, 9656-9659.	13.8	50
5	A substrate-binding-state mimic of H ₂ O ₂ -dependent cytochrome P450 produced by one-point mutagenesis and peroxygenation of non-native substrates. Catalysis Science and Technology, 2016, 6, 5806-5811.	4.1	49
6	Aromatic Câ \in "H bond hydroxylation by P450 peroxygenases: a facile colorimetric assay for monooxygenation activities of enzymes based on Russigâ \in Ms blue formation. Journal of Biological Inorganic Chemistry, 2010, 15, 1109-1115.	2.6	37
7	Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. Journal of Biological Inorganic Chemistry, 2010, 15, 1331-1339.	2.6	35
8	Mapping the key residues of SufB and SufD essential for biosynthesis of iron-sulfur clusters. Scientific Reports, 2017, 7, 9387.	3.3	31
9	Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase. Faraday Discussions, 2017, 198, 37-58.	3.2	29
10	Chiralâ€Substrateâ€Assisted Stereoselective Epoxidation Catalyzed by H ₂ O ₂ â€Dependent Cytochrome P450 _{SPα} . Chemistry - an Asian Journal, 2012, 7, 2286-2293.	3.3	26
11	Protein-pyridinol thioester precursor for biosynthesis of the organometallic acyl-iron ligand in [Fe]-hydrogenase cofactor. Nature Communications, 2015, 6, 6895.	12.8	26
12	Zinc-Ligand Swapping Mediated Complex Formation and Sulfur Transfer between SufS and SufU for Ironâ€"Sulfur Cluster Biogenesis in ⟨i⟩Bacillus subtilis⟨/i⟩. Journal of the American Chemical Society, 2017, 139, 18464-18467.	13.7	26
13	Identification of the HcgB Enzyme in [Fe]â€Hydrogenaseâ€Cofactor Biosynthesis. Angewandte Chemie - International Edition, 2013, 52, 12555-12558.	13.8	25
14	Non-covalent modification of the active site of cytochrome P450 for inverting the stereoselectivity of monooxygenation. Tetrahedron Letters, 2011, 52, 395-397.	1.4	23
15	Construction of biocatalysts using the myoglobin scaffold for the synthesis of indigo from indole. Catalysis Science and Technology, 2012, 2, 739-744.	4.1	21
16	A possible iron delivery function of the dinuclear iron center of HcgD in [Fe]-hydrogenase cofactor biosynthesis. FEBS Letters, 2014, 588, 2789-2793.	2.8	21
17	Distinct roles for Uâ€type proteins in iron–sulfur cluster biosynthesis revealed by genetic analysis of the <i>Bacillus subtilis sufCDSUB</i> operon. Molecular Microbiology, 2018, 107, 688-703.	2.5	20
18	Snapshots of PLPâ€substrate and PLPâ€product external aldimines as intermediates in two types of cysteine desulfurase enzymes. FEBS Journal, 2020, 287, 1138-1154.	4.7	19

#	Article	IF	CITATIONS
19	Identification of HcgC as a SAMâ€Dependent Pyridinol Methyltransferase in [Fe]â€Hydrogenase Cofactor Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 9648-9651.	13.8	18
20	The Structure of the Dimeric State of IscU Harboring Two Adjacent [2Feâ€"2S] Clusters Provides Mechanistic Insights into Cluster Conversion to [4Feâ€"4S]. Biochemistry, 2021, 60, 1569-1572.	2.5	17
21	Identification of IscU residues critical for de novo iron–sulfur cluster assembly. Molecular Microbiology, 2019, 112, 1769-1783.	2.5	13
22	Identification of HcgC as a SAMâ€Dependent Pyridinol Methyltransferase in [Fe]â€Hydrogenase Cofactor Biosynthesis. Angewandte Chemie, 2016, 128, 9800-9803.	2.0	9
23	A cyclic lipopeptide surfactin is a species-selective Hsp90 inhibitor that suppresses cyanobacterial growth. Journal of Biochemistry, 2021, 170, 255-264.	1.7	8
24	Towards a functional identification of catalytically inactive [Fe]â€hydrogenase paralogs. FEBS Journal, 2015, 282, 3412-3423.	4.7	7
25	Evidence for dynamic in vivo interconversion of the conformational states of IscU during iron–sulfur cluster biosynthesis. Molecular Microbiology, 2021, 115, 807-818.	2.5	6
26	Crystal structure of <i>Escherichia coli</i> class II hybrid cluster protein, HCP, reveals a [4Feâ€4S] cluster at the Nâ€terminal protrusion. FEBS Journal, 2021, 288, 6752-6768.	4.7	6
27	Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis. Biophysics and Physicobiology, 2022, 19, n/a.	1.0	6
28	Structure of sirohydrochlorin ferrochelatase SirB: the last of the structures of the class II chelatase family. Dalton Transactions, 2019, 48, 6083-6090.	3.3	5
29	The nickel-sirohydrochlorin formation mechanism of the ancestral class II chelatase CfbA in coenzyme F430 biosynthesis. Chemical Science, 2021, 12, 2172-2180.	7.4	2
30	Cycloserine enantiomers inhibit PLPâ€dependent cysteine desulfurase SufS via distinct mechanisms. FEBS Journal, 2022, 289, 5947-5970.	4.7	2
31	6 Structure and function of [Fe]-hydrogenase and biosynthesis of the FeGP cofactor. , 0, , .		1
32	Inside Cover: Hydrogen Peroxide Dependent Monooxygenations by Tricking the Substrate Recognition of Cytochrome P450BS $\hat{1}^2$ (Angew. Chem. Int. Ed. 20/2007). Angewandte Chemie - International Edition, 2007, 46, 3592-3592.	13.8	0
33	Sulfur-mobilizing Enzymes Involved in Iron-sulfur Cluster Biosynthesis: Shared Structural Features and Functional Diversity. Seibutsu Butsuri, 2021, 61, 180-182.	0.1	0
34	2. Hydrogen development. , 2020, , 13-136.		0