List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1421696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Charging, Countercation Accommodation, and Spectrochemical Identity of Microcrystalline Solid Cobalt Hexacyanoferrate. Journal of Physical Chemistry B, 1998, 102, 1870-1876.	2.6	147
2	In Situ Xâ€Ray Absorption Spectroscopy Characterization of  V 2 O 5 Xerogel Cathodes upon Intercalation. Journal of the Electrochemical Society, 1999, 146, 2387-2392.	Lithiym 2.9	108
3	<i>In Vitro</i> and <i>in Vivo</i> Anticancer Activity of Copper(I) Complexes with Homoscorpionate Tridentate Tris(pyrazolyl)borate and Auxiliary Monodentate Phosphine Ligands. Journal of Medicinal Chemistry, 2014, 57, 4745-4760.	6.4	100
4	Layered-double-hydroxide-modified electrodes: electroanalytical applications. Analytical and Bioanalytical Chemistry, 2013, 405, 603-614.	3.7	97
5	Doped V ₂ O ₅ -Based Cathode Materials: Where Does the Doping Metal Go? An X-ray Absorption Spectroscopy Study. Chemistry of Materials, 2007, 19, 5991-6000.	6.7	91
6	<i>Operando</i> characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra. Journal Physics D: Applied Physics, 2017, 50, 074001.	2.8	85
7	Evidence of Bilayer Structure in V2O5Xerogel. Inorganic Chemistry, 2000, 39, 1514-1517.	4.0	75
8	Electrochemical characterisation of Ni/Alî—,X hydrotalcites and their electrocatalytic behaviour. Electrochimica Acta, 2002, 47, 2451-2461.	5.2	73
9	Multivariate Curve Resolution Analysis for Interpretation of Dynamic Cu K-Edge X-ray Absorption Spectroscopy Spectra for a Cu Doped V ₂ O ₅ Lithium Battery. Analytical Chemistry, 2010, 82, 3629-3635.	6.5	70
10	Synthesis and in vitro antitumor activity of water soluble sulfonate- and ester-functionalized silver(I) N-heterocyclic carbene complexes. Journal of Inorganic Biochemistry, 2013, 129, 135-144.	3.5	70
11	Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chemical Physics Letters, 1997, 275, 108-112.	2.6	68
12	Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. Physical Chemistry Chemical Physics, 2012, 14, 5527.	2.8	68
13	XAS and electrochemical characterization of lithiated high surface area V2O5 aerogels. Solid State Ionics, 1997, 104, 195-204.	2.7	67
14	Sulfate-selective electrodes based on hydrotalcites. Analytica Chimica Acta, 2001, 439, 265-272.	5.4	62
15	Synthesis and Characterization of Nanostructured Cobalt Hexacyanoferrate. Journal of Physical Chemistry C, 2010, 114, 6401-6407.	3.1	57
16	Homoleptic phosphino copper(<scp>i</scp>) complexes with in vitro and in vivo dual cytotoxic and anti-angiogenic activity. Metallomics, 2015, 7, 1497-1507.	2.4	54
17	Xâ€ray Absorption Spectroscopy Investigation of Lithiumâ€Rich, Cobaltâ€Poor Layeredâ€Oxide Cathode Material with High Capacity. ChemElectroChem, 2015, 2, 85-97.	3.4	54
18	Characterization of Solâ^'Gel-Synthesized LiFePO4by Multiple Scattering XAFS. Inorganic Chemistry, 2006, 45, 2750-2757.	4.0	53

#	Article	IF	CITATIONS
19	Evidence for Reversible Formation of Metallic Cu in Cu[sub 0.1]V[sub 2]O[sub 5] Xerogel Cathodes during Intercalation Cycling of Li[sup +] Ions as Detected by X-Ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2001, 148, A768.	2.9	49
20	A Review on the Structural Studies of Batteries and Host Materials by X-Ray Absorption Spectroscopy. ISRN Materials Science, 2013, 2013, 1-22.	1.0	49
21	Hybrid Metal Cyanometallates Electrochemical Charging and Spectrochemical Identity of Heteronuclear Nickel/Cobalt Hexacyanoferrate. Journal of the Electrochemical Society, 1999, 146, 3757-3761.	2.9	45
22	Applying chemometrics to study battery materials: Towards the comprehensive analysis of complex operando datasets. Energy Storage Materials, 2019, 18, 328-337.	18.0	44
23	Highlighting the Reversible Manganese Electroactivity in Naâ€Rich Manganese Hexacyanoferrate Material for Li―and Naâ€Ion Storage. Small Methods, 2020, 4, 1900529.	8.6	43
24	Structure of Fe/Co/Ni Hexacyanoferrate As Probed by Multiple Edge X-ray Absorption Spectroscopy. Inorganic Chemistry, 2008, 47, 6001-6008.	4.0	42
25	Nitroimidazole and glucosamine conjugated heteroscorpionate ligands and related copper(ii) complexes. Syntheses, biological activity and XAS studies. Dalton Transactions, 2011, 40, 9877.	3.3	42
26	Single-energy x-ray absorption detection: a combined electronic and structural local probe for phase transitions in condensed matter. Journal of Physics Condensed Matter, 1998, 10, 235-253.	1.8	41
27	In situ X-ray absorption spectroelectrochemical study of hydroxocobalamin. Journal of Biological Inorganic Chemistry, 2000, 5, 156-166.	2.6	41
28	Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite. Solid State Ionics, 2004, 168, 167-175.	2.7	41
29	Electrochemical sensors based on electrodes modified with synthetic hydrotalcites. Electrochimica Acta, 2006, 51, 2129-2134.	5.2	38
30	Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection. Electrochimica Acta, 2010, 55, 5036-5039.	5.2	38
31	Synthesis Route to Supported Gold Nanoparticle Layered Double Hydroxides as Efficient Catalysts in the Electrooxidation of Methanol. Langmuir, 2012, 28, 15065-15074.	3.5	38
32	Insights into the cytotoxic activity of the phosphane copper(I) complex [Cu(thp)4][PF6]. Journal of Inorganic Biochemistry, 2016, 165, 80-91.	3.5	38
33	A study on the coordinative versatility of new N,S-donor macrocyclic ligands: XAFS, and Cu2+ complexation thermodynamics in solution. Dalton Transactions, 2011, 40, 2764.	3.3	37
34	Heterostructure of Au Nanoparticles—NiAl Layered Double Hydroxide: Electrosynthesis, Characterization, and Electrocatalytic Properties. Journal of Physical Chemistry C, 2013, 117, 16221-16230.	3.1	37
35	Nickel hexacyanoferrate membrane as a coated wire cation-selective electrode. Analyst, The, 2001, 126, 2168-2171.	3.5	36
36	Copper Electroactivity in Prussian Blue-Based Cathode Disclosed by Operando XAS. Journal of Physical Chemistry C, 2018, 122, 15868-15877.	3.1	36

#	Article	IF	CITATIONS
37	Intercalation of Iron(III) Hexacyano Complex in a Ni,Al Hydrotalcite-like Compound. Journal of Physical Chemistry B, 2006, 110, 7265-7269.	2.6	35
38	Newly developed electrochemical synthesis of Co-based layered double hydroxides: toward noble metal-free electro-catalysis. Journal of Materials Chemistry A, 2019, 7, 11241-11249.	10.3	34
39	Li-Mn-O Aerogels. Electrochemical and Solid-State Letters, 1999, 2, 483.	2.2	33
40	The effect of the 3-trifluoromethyl substituent in polypyrazolylborato complexes on the iron(II) spin state; X-ray diffraction and absorption and Mössbauer studies. Inorganica Chimica Acta, 2001, 318, 67-76.	2.4	33
41	Identification of an Unconventional Zinc Coordination Site in Anhydrous ZnxV2O5Aerogels from X-ray Absorption Spectroscopy. Chemistry of Materials, 1999, 11, 2257-2264.	6.7	32
42	Straightforward Synthesis of Gold Nanoparticles Supported on Commercial Silica-Polyethyleneimine Beads. Journal of Physical Chemistry C, 2012, 116, 25434-25443.	3.1	32
43	AC impedance study of a synthetic hydrotalcite-like compound modified electrode in aqueous solution. Electrochimica Acta, 2003, 48, 1347-1355.	5.2	30
44	Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes. Journal of Physical Chemistry Letters, 2019, 10, 3359-3368.	4.6	29
45	Ni/Al Layered Double Hydroxide and Carbon Nanomaterial Composites for Glucose Sensing. ACS Applied Nano Materials, 2019, 2, 143-155.	5.0	29
46	Role of Fe in the oxidation of methanol electrocatalyzed by Ni based layered double hydroxides: X-ray spectroscopic and electrochemical studies. RSC Advances, 2016, 6, 110976-110985.	3.6	24
47	Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development. Applied Clay Science, 2017, 143, 151-158.	5.2	24
48	Absorption of polarized X-rays by V2O5-based cathodes for lithium batteries: an application. Electrochimica Acta, 2002, 47, 3163-3169.	5.2	23
49	Lattice Compensation to Jahn–Teller Distortion in Na-Rich Manganese Hexacyanoferrate for Li-Ion Storage: An Operando Study. ACS Applied Energy Materials, 2020, 3, 5728-5733.	5.1	22
50	X-ray Absorption Spectroscopy Study of Cu0.25V2O5and Zn0.25V2O5Aerogel-Like Cathodes for Lithium Batteries. Journal of Physical Chemistry B, 2004, 108, 3765-3771.	2.6	21
51	Cobalt hexacyanoferrate in PAMAM doped silica matrix. 2. Structural and electronic characterization. Electrochimica Acta, 2005, 51, 511-516.	5.2	21
52	Physicochemical characterization of metal hexacyanometallate–TiO ₂ composite materials. RSC Advances, 2015, 5, 35435-35447.	3.6	21
53	Operando XAFS and XRD Study of a Prussian Blue Analogue Cathode Material: Iron Hexacyanocobaltate. Condensed Matter, 2018, 3, 36.	1.8	21
54	Cu K-edge EXAFS on copper(I) complexes containing dihydridobis(3-nitro-1,2,4-triazol-1-yl)borate and bis(1,2,4-triazol-1-yl)acetate ligand: Evidence for the Cu–O interaction. Polyhedron, 2009, 28, 3600-3606.	2.2	20

4

#	Article	IF	CITATIONS
55	Electrochemical and synchrotron XAS studies of lithium intercalation into vanadium pentoxide aerogels and nanocomposites. Journal of Power Sources, 2001, 97-98, 469-472.	7.8	19
56	Synchrotron radiation X-ray absorption spectroscopic studies in solution and electrochemistry of a nitroimidazole conjugated heteroscorpionate copper(II) complex. Polyhedron, 2012, 48, 174-180.	2.2	19
57	Electrosynthesis of Ni/Al layered double hydroxide and reduced graphene oxide composites for the development of hybrid capacitors. Electrochimica Acta, 2021, 365, 137294.	5.2	19
58	A new approach for the synthesis of K+-free nickel hexacyanoferrate. Journal of Solid State Chemistry, 2006, 179, 3981-3988.	2.9	18
59	Cobalt hexacyanoferrate–poly(methyl methacrylate) composite: Synthesis and characterization. Materials Chemistry and Physics, 2010, 120, 118-122.	4.0	18
60	Copper hexacyanoferrate modified electrodes for hydrogen peroxide detection as studied by X-ray absorption spectroscopy. Journal of Solid State Electrochemistry, 2014, 18, 965-973.	2.5	18
61	Cobalt hexacyanoferrate in PAMAM-doped silica matrix. Electrochimica Acta, 2005, 51, 118-124.	5.2	17
62	Electrocatalytic Performances of Pure and Mixed Hexacyanoferrates of Cu and Pd for the Reduction of Hydrogen Peroxide. Electroanalysis, 2010, 22, 1695-1701.	2.9	17
63	Electrocatalytic determination of thiols using hybrid copper cobalt hexacyanoferrate modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2016, 228, 16-24.	7.8	17
64	Electrochemical performance of manganese hexacyanoferrate cathode material in aqueous Zn-ion battery. Electrochimica Acta, 2021, 400, 139414.	5.2	17
65	XAS investigation on polyvalent cation intercalation in V2O5aerogels. Journal of Synchrotron Radiation, 1999, 6, 743-745.	2.4	16
66	Anatase-driven charge transfer involving a spin transition in cobalt iron cyanide nanostructures. Physical Chemistry Chemical Physics, 2015, 17, 22519-22522.	2.8	16
67	Beyond the Oxygen Redox Strategy in Designing Cathode Material for Batteries: Dynamics of a Prussian Blue-like Cathode Revealed by Operando X-ray Diffraction and X-ray Absorption Fine Structure and by a Theoretical Approach. Journal of Physical Chemistry C, 2019, 123, 8588-8598.	3.1	16
68	The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials?. Electrochimica Acta, 2017, 257, 364-371.	5.2	15
69	Effect of Water and Alkaliâ€lon Content on the Structure of Manganese(II) Hexacyanoferrate(II) by a Joint Operando Xâ€ray Absorption Spectroscopy and Chemometric Approach. ChemSusChem, 2020, 13, 608-615.	6.8	15
70	EXAFS and XANES simulations of Fe/Co hexacyanoferrate spectra by GNXAS and MXAN. Journal of Physics: Conference Series, 2009, 190, 012145.	0.4	12
71	X-ray absorption spectroscopy study on the electrochemical reduction of Co((DO)(DOH)pn)Br2. Electrochimica Acta, 2000, 45, 4475-4482.	5.2	11
72	Easy recovery of Li-ion cathode powders by the use of water-processable binders. Electrochimica Acta, 2022, 418, 140376.	5.2	11

#	Article	IF	CITATIONS
73	X-ray absorption spectroscopy and electrochemistry on biological samples. Journal of Synchrotron Radiation, 1999, 6, 384-386.	2.4	10
74	Chemiresistors for ethanol detection in hydrocarbons. Sensors and Actuators B: Chemical, 2010, 148, 147-152.	7.8	10
75	Electrochemical synthesis of nano-cobalt hexacyanoferrate at a sol–gel-coated electrode templated with β-cyclodextrin. Journal of Solid State Electrochemistry, 2012, 16, 2861-2866.	2.5	10
76	Structural and electronic studies of metal hexacyanoferrates based cathodes for Li rechargeable batteries. Journal of Physics: Conference Series, 2016, 712, 012127.	0.4	10
77	The coordination core and charge of chromium in Metakaolin-geopolymers as revealed by X-Ray absorption spectroscopy. Materials Letters, 2020, 270, 127741.	2.6	10
78	X-ray Absorption Spectroscopic Study of "Costa Type―Organocobalt Coenzyme B12Models. Organometallics, 1996, 15, 3491-3495.	2.3	9
79	Speciation of Gold Nanoparticles by Ex Situ Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure. Analytical Chemistry, 2016, 88, 6873-6880.	6.5	9
80	Thin layer films of copper hexacyanoferrate: Structure identification and analytical applications. Journal of Electroanalytical Chemistry, 2018, 827, 10-20.	3.8	9
81	Thermodynamic stability and structure in aqueous solution of the [Cu(PTA)4]+ complex (PTA = aminophosphineâ€ʿ1,3,5â€ʿtriazaâ€ʿ7â€ʿphosphaadamantane). Journal of Inorganic Biochemistry, 20 50-61.	183.\$88,	9
82	XAFS studies on copper(I) complexes containing scorpionate ligands. Journal of Physics: Conference Series, 2009, 190, 012146.	0.4	8
83	Pure copper vs. mixed copper and palladium hexacyanoferrates for glucose biosensing applications. Journal of Solid State Electrochemistry, 2013, 17, 2805-2814.	2.5	8
84	Electrochemistry of TiO2–iron hexacyanocobaltate composite electrodes. Solid State Ionics, 2014, 259, 53-58.	2.7	8
85	The coordination core of Ag(<scp>i</scp>) N-heterocyclic carbene (NHC) complexes with anticancer properties as revealed by synchrotron radiation X-ray absorption spectroscopy. Journal of Analytical Atomic Spectrometry, 2014, 29, 491-497.	3.0	7
86	Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities. , 2019, , 109-133.		7
87	Detailing the Self-Discharge of a Cathode Based on a Prussian Blue Analogue. Energies, 2020, 13, 4027.	3.1	6
88	Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials. Applied Sciences (Switzerland), 2021, 11, 2791.	2.5	6
89	Titanium Activation in Prussian Blue Based Electrodes for Na-ion Batteries: A Synthesis and Electrochemical Study. Batteries, 2021, 7, 5.	4.5	6
90	Efficient chemical stabilization of tannery wastewater pollutants in a single step process: Geopolymerization. Sustainable Environment Research, 2021, 31, .	4.2	6

#	Article	IF	CITATIONS
91	Structural study of the Cu ²⁺ -loaded copper hexacyanoferrate electrode deposited on indium tin oxide substrate. Journal of Physics: Conference Series, 2013, 430, 012049.	0.4	5
92	Electrosynthesis and characterization of Layered Double Hydroxides on different supports. Applied Clay Science, 2021, 202, 105949.	5.2	5
93	Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. Condensed Matter, 2021, 6, 27.	1.8	5
94	Voltammetric Determination of ITX in Hydro-Alcoholic Solutions and Wine. Analytical Letters, 2011, 44, 2335-2346.	1.8	4
95	Evidence for a double doping regime in Nd:YAG nanopowders. Journal of Materials Science, 2009, 44, 1572-1579.	3.7	3
96	Electron transfer and spin transition in metal-hexacyanoferrates driven by anatase TiO ₂ : electronic and structural order effects. New Journal of Chemistry, 2016, 40, 10406-10411.	2.8	3
97	The peculiar redox mechanism of copper nitroprusside disclosed by a multi-technique approach. Radiation Physics and Chemistry, 2020, 175, 108336.	2.8	3
98	Symmetric Aqueous Batteries of Titanium Hexacyanoferrate in Na+, K+, and Mg2+ Media. Batteries, 2022, 8, 1.	4.5	3
99	Local structure modification in lithium rich layered Li-Mn-O cathode material. Journal of Physics: Conference Series, 2016, 712, 012130.	0.4	2
100	X-Ray Absorption Spectroscopy Study of Battery Materials. , 0, , .		2
101	XAFS studies on battery materials: Data analysis supported by a chemometric approach. Radiation Physics and Chemistry, 2020, 175, 108252.	2.8	2
102	Stable films of zinc-hexacyanoferrate: electrochemistry and ion insertion capabilities. Journal of Solid State Electrochemistry, 2022, 26, 63-72.	2.5	2
103	Fe, Ni and Zn speciation, in airborne particulate matter. Journal of Physics: Conference Series, 2016, 712, 012087.	0.4	1
104	Reversible Jahn–Teller Effect: Highlighting the Reversible Manganese Electroactivity in Naâ€Rich Manganese Hexacyanoferrate Material for Li―and Naâ€ŀon Storage (Small Methods 1/2020). Small Methods, 2020, 4, 2070005.	8.6	1
105	Metal Hexacyanoferrate Absorbents for Heavy Metal Removal. Environmental Chemistry for A Sustainable World, 2021, , 171-194.	0.5	1
106	X-Ray Absorption Spectroscopy Study of Cu0.25V2O5 and Zn0.25V2O5 Aerogel-Like Cathodes for Lithium Batteries ChemInform, 2004, 35, no.	0.0	0
107	Structural Effects of Anomalous Current Densities on Manganese Hexacyanoferrate for Li-Ion Batteries. Applied Sciences (Switzerland), 2020, 10, 7573.	2.5	0
108	Multi-edge and Multiple Scattering EXAFS Analysis of Metal Hexacyanoferrates: Application in Battery Materials. Springer Proceedings in Physics, 2021, , 99-109.	0.2	0

#	Article	IF	CITATIONS
109	Sustainable Chromium Encapsulation: Alkali Activation Route. Frontiers in Materials, 0, 9, .	2.4	0