Bryan E Pfingst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1421673/publications.pdf

Version: 2024-02-01

		117625	161849
78	3,326	34	54
papers	citations	h-index	g-index
0.0	0.0	0.0	2.42.4
80	80	80	1414
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Relative contributions of spectral and temporal cues for phoneme recognition. Journal of the Acoustical Society of America, 2005, 117, 3255-3267.	1.1	205
2	Features of stimulation affecting tonal-speech perception: Implications for cochlear prostheses. Journal of the Acoustical Society of America, 2002, 112 , 247 - 258 .	1.1	179
3	Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Experimental Neurology, 2010, 223, 464-472.	4.1	121
4	Relation of Psychophysical Data to Histopathology in Monkeys with Cochlear Implants. Acta Oto-Laryngologica, 1981, 92, 1-13.	0.9	120
5	The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials, 2012, 33, 1982-1990.	11.4	117
6	Importance of cochlear health for implant function. Hearing Research, 2015, 322, 77-88.	2.0	105
7	Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hearing Research, 1997, 112, 247-260.	2.0	76
8	RELATION OF COCHLEAR IMPLANT FUNCTION TO HISTOPATHOLOGY IN MONKEYS. Annals of the New York Academy of Sciences, 1983, 405, 224-239.	3.8	73
9	Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 731-750.	1.8	73
10	Across-site patterns of modulation detection: Relation to speech recognition. Journal of the Acoustical Society of America, 2012, 131, 4030-4041.	1.1	69
11	Effects of phase duration on detection of electrical stimulation of the human cochlea. Hearing Research, 1993, 67, 166-178.	2.0	67
12	Using Temporal Modulation Sensitivity to Select Stimulation Sites for Processor MAPs in Cochlear Implant Listeners. Audiology and Neuro-Otology, 2013, 18, 247-260.	1.3	67
13	Nerve maintenance and regeneration in the damaged cochlea. Hearing Research, 2011, 281, 56-64.	2.0	65
14	Effects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implants. Journal of the Acoustical Society of America, 2007, 121, 2236-2246.	1.1	63
15	Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hearing Research, 2008, 245, 24-34.	2.0	63
16	Effects of Hearing Preservation on Psychophysical Responses to Cochlear Implant Stimulation. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 245-265.	1.8	63
17	Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Hearing Research, 2016, 341, 50-65.	2.0	60
18	Across-Site Variation in Detection Thresholds and Maximum Comfortable Loudness Levels for Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 11-24.	1.8	59

#	Article	IF	CITATIONS
19	Effects of Electrode Configuration and Place of Stimulation on Speech Perception with Cochlear Prostheses., 2001, 2, 87-103.		58
20	Across-Site Threshold Variation in Cochlear Implants: Relation to Speech Recognition. Audiology and Neuro-Otology, 2004, 9, 341-352.	1.3	56
21	Differential Effects of AAV.BDNF and AAV.Ntf3 in the Deafened Adult Guinea Pig Ear. Scientific Reports, 2015, 5, 8619.	3.3	56
22	The use of Neurotrophin Therapy in the Inner Ear to Augment Cochlear Implantation Outcomes. Anatomical Record, 2012, 295, 1896-1908.	1.4	55
23	Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients. Ear and Hearing, 2018, 39, 344-358.	2.1	55
24	Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures. Hearing Research, 1995, 92, 85-99.	2.0	53
25	Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. I: Phase duration and stimulus duration. Journal of the Acoustical Society of America, 1991, 90, 1857-1866.	1.1	52
26	Cochlear infrastructure for electrical hearing. Hearing Research, 2011, 281, 65-73.	2.0	52
27	Detection of pulse trains in the electrically stimulated cochlea: Effects of cochlear health. Journal of the Acoustical Society of America, 2011, 130, 3954-3968.	1.1	52
28	Insertion trauma and recovery of function after cochlear implantation: Evidence from objective functional measures. Hearing Research, 2015, 330, 98-105.	2.0	52
29	Psychophysical Evaluation of Cochlear Prostheses in a Monkey Model. Annals of Otology, Rhinology and Laryngology, 1979, 88, 613-625.	1.1	51
30	Comparisons of psychophysical and neurophysiological studies of cochlear implants. Hearing Research, 1988, 34, 243-251.	2.0	48
31	Changes over time in thresholds for electrical stimulation of the cochlea. Hearing Research, 1990, 50, 225-236.	2.0	48
32	Effects of stimulus level on electrode-place discrimination in human subjects with cochlear implants. Hearing Research, 1999, 134, 105-115.	2.0	45
33	Intensity discrimination with cochlear implants. Journal of the Acoustical Society of America, 1983, 73, 1283-1292.	1.1	41
34	Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. II: Frequency and interpulse interval. Journal of the Acoustical Society of America, 1993, 94, 1287-1294.	1.1	40
35	Across-site patterns of modulation detection in listeners with cochlear implants. Journal of the Acoustical Society of America, 2008, 123, 1054-1062.	1.1	38
36	Relationship between gap detection thresholds and loudness in cochlear-implant users. Hearing Research, 2011, 275, 130-138.	2.0	36

#	Article	IF	CITATIONS
37	Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. Journal of the Acoustical Society of America, 2012, 132, 994-1008.	1.1	34
38	Characteristics of detection thresholds and maximum comfortable loudness levels as a function of pulse rate in human cochlear implant users. Hearing Research, 2012, 284, 25-32.	2.0	33
39	Across-species comparisons of psychophysical detection thresholds for electrical stimulation of the cochlea: II. Strength-duration functions for single, biphasic pulses. Hearing Research, 1999, 135, 47-55.	2.0	32
40	Effects of Electrode Location on Estimates of Neural Health in Humans with Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 259-275.	1.8	32
41	Effects of deafening and cochlear implantation procedures on postimplantation psychophysical electrical detection thresholds. Hearing Research, 2008, 241, 64-72.	2.0	31
42	Effects of Site-Specific Level Adjustments on Speech Recognition With Cochlear Implants. Ear and Hearing, 2014, 35, 30-40.	2.1	31
43	Integration of Pulse Trains in Humans and Guinea Pigs with Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 523-534.	1.8	31
44	Functional responses from guinea pigs with cochlear implants II. Changes in electrophysiological and psychophysical measures over time. Hearing Research, 1995, 92, 100-111.	2.0	30
45	Effects of Electrode Configuration and Stimulus Level on Rate and Level Discrimination with Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 211-223.	1.8	29
46	Relationship between multipulse integration and speech recognition with cochlear implants. Journal of the Acoustical Society of America, 2014, 136, 1257-1268.	1.1	29
47	Effects of electrode configuration on threshold functions for electrical stimulation of the cochlea. Hearing Research, 1995, 85, 76-84.	2.0	28
48	Effects of time after deafening and implantation on guinea pig electrical detection thresholds. Hearing Research, 2000, 144, 175-186.	2.0	25
49	Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients. Cochlear Implants International, 2017, 18, 324-334.	1.2	25
50	Effects of stimulus level on nonspectral frequency discrimination by human subjects. Hearing Research, 1994, 78, 197-209.	2.0	24
51	Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. III. Pulse polarity. Journal of the Acoustical Society of America, 1996, 99, 3099-3108.	1.1	22
52	Effects of Stimulus Level on Speech Perception with Cochlear Prostheses. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 49-59.	1.8	22
53	Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig. Scientific Reports, 2019, 9, 3711.	3.3	22
54	Effects of level on nonspectral frequency difference limens for electrical and acoustic stimuli. Hearing Research, 1990, 50, 43-56.	2.0	21

#	Article	IF	CITATIONS
55	Psychophysical Metrics and Speech Recognition in Cochlear Implant Users. Audiology and Neuro-Otology, 2005, 10, 331-341.	1.3	20
56	NEURAL ENCODING OF ELECTRICAL SIGNALS. Annals of the New York Academy of Sciences, 1983, 405, 146-158.	3.8	19
57	Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to spatial selectivity. Journal of the Acoustical Society of America, 2016, 140, 1537-1547.	1.1	19
58	Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs. Hearing Research, 2019, 383, 107809.	2.0	18
59	Relationships between Intrascalar Tissue, Neuron Survival, and Cochlear Implant Function. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 337-352.	1.8	17
60	Comparison of spectral and nonspectral frequency difference limens for human and nonhuman primates. Journal of the Acoustical Society of America, 1993, 93, 2124-2129.	1.1	15
61	Interactions between pulse separation and pulse polarity order in cochlear implants. Hearing Research, 1997, 109, 21-33.	2.0	15
62	How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance. Journal of the Acoustical Society of America, 2020, 148, 3900-3912.	1.1	15
63	Effects of pulse separation on detection thresholds for electrical stimulation of the human cochlea. Hearing Research, 1996, 98, 77-92.	2.0	14
64	Current-level discrimination using bipolar and monopolar electrode configurations in cochlear implants. Hearing Research, 2005, 202, 170-179.	2.0	14
65	Across-species comparisons of psychophysical detection thresholds for electrical stimulation of the cochlea: I. Sinusoidal stimuli. Hearing Research, 1999, 134, 89-104.	2.0	13
66	Effects of electrode configuration on cochlear implant modulation detection thresholds. Journal of the Acoustical Society of America, 2011, 129, 3908-3915.	1.1	13
67	A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function. Ear and Hearing, 2022, 43, 150-164.	2.1	13
68	Development of Cochlear-wall Implants for Electrical Stimulation of the Auditory Nerve. Acta Oto-Laryngologica, 1989, 107, 210-218.	0.9	12
69	Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to forward-masking recovery. Journal of the Acoustical Society of America, 2016, 139, EL70-EL75.	1.1	12
70	Inner ear implants for experimental electrical stimulation of auditory nerve arrays. Journal of Neuroscience Methods, 1989, 28, 189-196.	2.5	11
71	Efficacy of a Cochlear Implant Simultaneous Analog Stimulation Strategy Coupled with a Monopolar Electrode Configuration. Annals of Otology, Rhinology and Laryngology, 2005, 114, 886-893.	1.1	11
72	Psychophysical assessment of stimulation sites in auditory prosthesis electrode arrays. Hearing Research, 2008, 242, 172-183.	2.0	11

#	Article	IF	CITATIONS
73	Development of a chronically-implanted mouse model for studies of cochlear health and implant function. Hearing Research, 2021, 404, 108216.	2.0	9
74	Current-Level Discrimination in the Context of Interleaved, Multichannel Stimulation in Cochlear Implants: Effects of Number of Stimulated Electrodes, Pulse Rate, and Electrode Separation. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 308-316.	1.8	7
75	Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Hearing Research, 2021, 406, 108257.	2.0	5
76	Psychophysical Constraints on Biophysical/Neural Models of Threshold. , 1990, , 161-185.		3
77	Estimating Health of the Implanted Cochlea using Psychophysical Strength-Duration Functions and Electrode Configuration. Hearing Research, 2021, 414, 108404.	2.0	1
78	Auditory Prostheses. Frontiers in Neuroscience, 2000, , .	0.0	0