## Ekaterina Igorevna Shishatskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1421418/publications.pdf Version: 2024-02-01



Ekaterina Igorevna

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering C, 2018, 86, 144-150.                                                                                                                                                                  | 3.8 | 182       |
| 2  | Results of biomedical investigations of PHB and PHB/PHV fibers. Biochemical Engineering Journal, 2003, 16, 125-133.                                                                                                                                                                | 1.8 | 134       |
| 3  | Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food and Chemical Toxicology, 2016, 91, 42-57.                                                                                                                  | 1.8 | 107       |
| 4  | Cell growth and accumulation of polyhydroxyalkanoates from CO 2 and H 2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresource Technology, 2013, 146, 215-222.                                                                                              | 4.8 | 89        |
| 5  | Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their<br>Biodegradability. Microbial Ecology, 2017, 73, 353-367.                                                                                                                           | 1.4 | 87        |
| 6  | Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics.<br>Polymer Testing, 2018, 65, 54-68.                                                                                                                                          | 2.3 | 86        |
| 7  | Battle of GLP-1 delivery technologies. Advanced Drug Delivery Reviews, 2018, 130, 113-130.                                                                                                                                                                                         | 6.6 | 84        |
| 8  | Experimental wound dressings of degradable PHA for skin defect repair. Journal of Materials Science:<br>Materials in Medicine, 2016, 27, 165.                                                                                                                                      | 1.7 | 67        |
| 9  | Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068.<br>Applied Microbiology and Biotechnology, 2018, 102, 7417-7428.                                                                                                                  | 1.7 | 64        |
| 10 | Biocompatibility of polyhydroxybutyrate microspheres: inÂvitro and inÂvivo evaluation. Journal of<br>Materials Science: Materials in Medicine, 2008, 19, 2493-2502.                                                                                                                | 1.7 | 62        |
| 11 | A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and<br>Synthesis of Multicomponent PHAs. PLoS ONE, 2014, 9, e87551.                                                                                                                  | 1.1 | 55        |
| 12 | Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 370-393.                                                                                 | 1.9 | 51        |
| 13 | Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units.<br>International Journal of Biological Macromolecules, 2018, 111, 1019-1026.                                                                                                         | 3.6 | 32        |
| 14 | Constructing herbicide metribuzin sustained-release formulations based on the natural polymer<br>poly-3-hydroxybutyrate as a degradable matrix. Journal of Environmental Science and Health - Part B<br>Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 113-125. | 0.7 | 30        |
| 15 | Manipulation of Ralstonia eutropha Carbon Storage Pathways to Produce Useful Bio-Based Products.<br>Sub-Cellular Biochemistry, 2012, 64, 343-366.                                                                                                                                  | 1.0 | 28        |
| 16 | Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Applied Microbiology and Biotechnology, 2019, 103, 225-237.                                                                                               | 1.7 | 28        |
| 17 | An in vivo study of osteoplastic properties of resorbable poly-3-hydroxybutyrate in models of segmental osteotomy and chronic osteomyelitis. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 344-355.                                                                  | 1.9 | 24        |
| 18 | Constructing Slow-Release Fungicide Formulations Based on Poly(3-hydroxybutyrate) and Natural<br>Materials as a Degradable Matrix. Journal of Agricultural and Food Chemistry, 2019, 67, 9220-9231.                                                                                | 2.4 | 24        |

Ekaterina Igorevna

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Toxic effects of the fungicide tebuconazole on the root system of fusarium-infected wheat plants.<br>Plant Physiology and Biochemistry, 2018, 132, 400-407.                                                                          | 2.8 | 22        |
| 20 | Biomedical Investigations of Biodegradable PHAs. Macromolecular Symposia, 2008, 269, 65-81.                                                                                                                                          | 0.4 | 20        |
| 21 | Bacterial Cellulose (BC) and BC Composites: Production and Properties. Nanomaterials, 2022, 12, 192.                                                                                                                                 | 1.9 | 20        |
| 22 | Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole. Environmental Science and Pollution Research, 2016, 23, 5243-5254.                                                | 2.7 | 19        |
| 23 | Efficacy of tebuconazole embedded in biodegradable polyâ€3â€hydroxybutyrate to inhibit the development<br>of <i>Fusarium moniliforme</i> in soil microecosystems. Pest Management Science, 2017, 73, 925-935.                        | 1.7 | 18        |
| 24 | Constructing sustainedâ€release herbicide formulations based on polyâ€3â€hydroxybutyrate and natural<br>materials as a degradable matrix. Pest Management Science, 2020, 76, 1772-1785.                                              | 1.7 | 18        |
| 25 | Poly(3-hydroxybutyrate)/metribuzin formulations: characterization, controlled release properties,<br>herbicidal activity, and effect on soil microorganisms. Environmental Science and Pollution Research,<br>2016, 23, 23936-23950. | 2.7 | 17        |
| 26 | Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds. Journal<br>of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,<br>2017, 52, 729-735.  | 0.7 | 17        |
| 27 | Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Cupriavidus necator IBP/SFU-1, from Various Carbon Sources. Polymers, 2021, 13, 3142.                                                             | 2.0 | 17        |
| 28 | Biocompatibility and Resorption of Intravenously Administered Polymer Microparticles in Tissues of<br>Internal Organs of Laboratory Animals. Journal of Biomaterials Science, Polymer Edition, 2011, 22,<br>2185-2203.               | 1.9 | 15        |
| 29 | Synthesis of Polyhydroxyalkanoates by Hydrogen-Oxidizing Bacteria in a Pilot Production Process.<br>Biomacromolecules, 2019, 20, 3261-3270.                                                                                          | 2.6 | 15        |
| 30 | Sugar Beet Molasses as a Potential C-Substrate for PHA Production by Cupriavidus necator.<br>Bioengineering, 2022, 9, 154.                                                                                                           | 1.6 | 15        |
| 31 | Development and characterization of ceftriaxone-loaded P3HB-based microparticles for drug delivery.<br>Drying Technology, 2019, 37, 1131-1142.                                                                                       | 1.7 | 14        |
| 32 | Efficacy of Slow-Release Formulations of Metribuzin and Tribenuron Methyl Herbicides for<br>Controlling Weeds of Various Species in Wheat and Barley Stands. ACS Omega, 2020, 5, 25135-25147.                                        | 1.6 | 12        |
| 33 | Properties of a novel quaterpolymer P(3HB/4HB/3HV/3HHx). Polymer, 2016, 101, 67-74.                                                                                                                                                  | 1.8 | 11        |
| 34 | Novel spray-dried PHA microparticles for antitumor drug release. Drying Technology, 2018, 36, 1387-1398.                                                                                                                             | 1.7 | 8         |
| 35 | Synthesis of poly(3-hydroxybutyrate) by the autotrophic CO-oxidizing bacterium <i>Seliberia<br/>carboxydohydrogena</i> Z-1062. Journal of Industrial Microbiology and Biotechnology, 2015, 42,<br>1377-1387.                         | 1.4 | 7         |
| 36 | Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition.<br>Polymers, 2021, 13, 1553.                                                                                                          | 2.0 | 7         |

**EKATERINA** IGOREVNA

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Short-term culture of monocytes as an inÂvitro evaluation system for bionanomaterials designated for medical use. Food and Chemical Toxicology, 2016, 96, 302-308.                                                                                       | 1.8 | 6         |
| 38 | The effect of the chemical composition and structure of polymer films made from resorbable polyhydroxyalkanoates on blood cell response. International Journal of Biological Macromolecules, 2019, 141, 765-775.                                         | 3.6 | 6         |
| 39 | Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon<br>Sources. Journal of Polymers and the Environment, 2021, 29, 837-850.                                                                                 | 2.4 | 6         |
| 40 | A study of the properties and efficacy of microparticles based on P( <scp>3HB</scp> ) and<br>P( <scp>3HB</scp> / <scp>3HV</scp> ) loaded with herbicides. Journal of Applied Polymer Science, 2022,<br>139, 51756.                                       | 1.3 | 6         |
| 41 | Biosynthesis and properties of P(3HBâ€ <i>co</i> â€3HVâ€ <i>co</i> â€3H4MV) produced by using the wildâ€type strain <i>Cupriavidus eutrophus</i> Bâ€10646. Journal of Chemical Technology and Biotechnology, 2019, 94, 195-203.                          | 1.6 | 5         |
| 42 | Screening of biopolymeric materials for cardiovascular surgery toxicity—Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients. Toxicology Reports, 2019, 6, 74-90. | 1.6 | 5         |
| 43 | Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial<br>Polyhydroxyalkanoates. Advances in Polymer Technology, 2022, 2022, 1-14.                                                                           | 0.8 | 3         |
| 44 | The Morphology and Phenotype of Monocyte-Macrophages When Cultured on Bionanofilms<br>Substrates with Different Surface Relief Profiles. Biomolecules, 2020, 10, 65.                                                                                     | 1.8 | 2         |
| 45 | Assessment of the efficacy of slow-release formulations of the tribenuron-methyl herbicide in field-grown spring wheat. Environmental Science and Pollution Research, 2022, 29, 20249-20264.                                                             | 2.7 | 2         |
| 46 | Collagen conjugation to carboxyl-modified poly(3-hydroxybutyrate) microparticles: preparation, characterization and evaluation in vitro. Journal of Polymer Research, 2022, 29, .                                                                        | 1.2 | 2         |
| 47 | A study of synthesis and properties of polyâ€3â€hydroxybutyrate/diethylene glycol copolymers.<br>Biotechnology Progress, 2016, 32, 1017-1028.                                                                                                            | 1.3 | 1         |