Tjebo F C Heeren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/142108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intraretinal pigmented cells in retinal degenerative disease. British Journal of Ophthalmology, 2023, 107, 1736-1743.	2.1	4
2	State of the art spatial visualization of the response of neovascularisation to anti-vascular endothelial growth factor therapy. American Journal of Ophthalmology Case Reports, 2022, 25, 101267.	0.4	0
3	Right-angled vessels in macular telangiectasia type 2. British Journal of Ophthalmology, 2021, 105, 1289-1296.	2.1	30
4	Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images. British Journal of Ophthalmology, 2021, 105, 265-270.	2.1	29
5	Contextualizing singleâ€arm trials with realâ€world data: An emulated target trial comparing therapies for neovascular ageâ€related macular degeneration. Clinical and Translational Science, 2021, 14, 1166-1175.	1.5	4
6	Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder. Communications Biology, 2021, 4, 274.	2.0	26
7	Quantification of Key Retinal Features in Early and Late Age-Related Macular Degeneration Using Deep Learning. American Journal of Ophthalmology, 2021, 226, 1-12.	1.7	32
8	HYPERREFLECTIVITY ON OPTICAL COHERENCE TOMOGRAPHY IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2021, 41, 1428-1437.	1.0	14
9	Fundus Autofluorescence Imaging in Macular Telangiectasia Type 2: MacTel Study Report Number 9. American Journal of Ophthalmology, 2021, 228, 27-34.	1.7	9
10	Effect of ethnicity and other sociodemographic factors on attendance at diabetic eye screening: a 12-month retrospective cohort study. BMJ Open, 2021, 11, e046264.	0.8	8
11	Novel biomarker of sphericity and cylindricity indices in volume-rendering optical coherence tomography angiography in normal and diabetic eyes: a preliminary study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 711-723.	1.0	11
12	Postretinal Detachment Retinal Displacement: How Best to Detect It?. Ophthalmologica, 2020, 243, 280-287.	1.0	8
13	DARK ADAPTATION IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2020, 40, 2018-2025.	1.0	7
14	Systemic lipid dysregulation is a risk factor for macular neurodegenerative disease. Scientific Reports, 2020, 10, 12165.	1.6	24
15	Macular Telangiectasia Type 2: Visual Acuity, Disease End Stage, and the MacTel Area. Ophthalmology, 2020, 127, 1539-1548.	2.5	34
16	Longitudinal Assessment of Remnant Foveal Cone Structure in a Case Series of Early Macular Telangiectasia Type 2. Translational Vision Science and Technology, 2020, 9, 27.	1.1	8
17	Comparison of true-colour wide-field confocal scanner imaging with standard fundus photography for diabetic retinopathy screening. British Journal of Ophthalmology, 2020, 104, bjophthalmol-2019-315269.	2.1	10
18	Effect of Face-Down Positioning vs Support-the-Break Positioning After Macula-Involving Retinal Detachment Repair. JAMA Ophthalmology, 2020, 138, 634.	1.4	38

TJEBO F C HEEREN

#	Article	IF	CITATIONS
19	Contrast sensitivity and visual acuity under low light conditions in macular telangiectasia type 2. British Journal of Ophthalmology, 2019, 103, 398-403.	2.1	12
20	Quantification of Retinal and Choriocapillaris Perfusion in Different Stages of Macular Telangiectasia Type 2. , 2019, 60, 3556.		18
21	Validation of automated artificial intelligence segmentation of optical coherence tomography images. PLoS ONE, 2019, 14, e0220063.	1.1	48
22	High-Resolution In Vivo Fundus Angiography using a Nonadaptive Optics Imaging System. Translational Vision Science and Technology, 2019, 8, 54.	1.1	3
23	Binocular Inhibition of Reading in Macular Telangiectasia Type 2. , 2019, 60, 3835.		13
24	Serine and Lipid Metabolism in Macular Disease and Peripheral Neuropathy. New England Journal of Medicine, 2019, 381, 1422-1433.	13.9	166
25	Dark-Adapted Two-Color Fundus-Controlled Perimetry in Macular Telangiectasia Type 2. , 2019, 60, 1760.		11
26	Feasibility of support vector machine learning in ageâ€related macular degeneration using small sample yielding sparse optical coherence tomography data. Acta Ophthalmologica, 2019, 97, e719-e728.	0.6	10
27	Progression characteristics of ellipsoid zone loss in macular telangiectasia type 2. Acta Ophthalmologica, 2019, 97, e998-e1005.	0.6	22
28	Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2. JAMA Network Open, 2019, 2, e188029.	2.8	51
29	Stereoscopic Vision in Macular Telangiectasia Type 2. Ophthalmologica, 2019, 241, 121-129.	1.0	3
30	Enhanced resolution and speckleâ€free threeâ€dimensional printing of macular optical coherence tomography angiography. Acta Ophthalmologica, 2019, 97, e317-e319.	0.6	14
31	IDENTIFICATION OF INCREASED BLUE LIGHT REFLECTIVITY IN MACULAR TELANGIECTASIA TYPE 2 USING SCANNING LASER OPHTHALMOSCOPY VERSUS RED-FREE FUNDUS PHOTOGRAPHY. Retinal Cases and Brief Reports, 2019, 13, 115-117.	0.3	1
32	SCOTOMA CHARACTERISTICS IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S14-S19.	1.0	13
33	CORRELATION OF CLINICAL AND STRUCTURAL PROGRESSION WITH VISUAL ACUITY LOSS IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S8-S13.	1.0	51
34	LONGITUDINAL CORRELATION OF ELLIPSOID ZONE LOSS AND FUNCTIONAL LOSS IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S20-S26.	1.0	58
35	ELECTROPHYSIOLOGICAL CHARACTERIZATION OF MACULAR TELANGIECTASIA TYPE 2 AND STRUCTURE–FUNCTION CORRELATION. Retina, 2018, 38, S33-S42.	1.0	15
36	EFFECT OF DARK ADAPTATION AND BLEACHING ON BLUE LIGHT REFLECTANCE IMAGING IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S89-S96.	1.0	3

TJEBO F C HEEREN

#	Article	IF	CITATIONS
37	MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S97-S104.	1.0	6
38	Safety and Feasibility of a Novel Sparse Optical Coherence Tomography Device for Patient-Delivered Retina Home Monitoring. Translational Vision Science and Technology, 2018, 7, 8.	1.1	44
39	Macular Pigment Distribution as Prognostic Marker for Disease Progression in Macular Telangiectasia Type 2. American Journal of Ophthalmology, 2018, 194, 163-169.	1.7	19
40	High-Performance Virtual Reality Volume Rendering of Original Optical Coherence Tomography Point-Cloud Data Enhanced With Real-Time Ray Casting. Translational Vision Science and Technology, 2018, 7, 2.	1.1	28
41	Feasibility Study of Subfoveal Choroidal Thickness Changes in Spectral-Domain Optical Coherence Tomography Measurements of Macular Telangiectasia Type 2. Lecture Notes in Computer Science, 2018, , 303-309.	1.0	0
42	Pentaerythritol Tetranitrate In Vivo Treatment Improves Oxidative Stress and Vascular Dysfunction by Suppression of Endothelin-1 Signaling in Monocrotaline-Induced Pulmonary Hypertension. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	1.9	26
43	Treatment for Macular Telangiectasia Type 2. Developments in Ophthalmology, 2016, 55, 189-195.	0.1	9
44	VERY EARLY DISEASE MANIFESTATIONS OF MACULAR TELANGIECTASIA TYPE 2. Retina, 2016, 36, 524-534.	1.0	40
45	In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 59-67.	1.0	18
46	POOR LONG-TERM OUTCOME OF ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY IN NONPROLIFERATIVE MACULAR TELANGIECTASIA TYPE 2. Retina, 2015, 35, 2619-2626.	1.0	26
47	Progression of Vision Loss in Macular Telangiectasia Type 2. , 2015, 56, 3905.		64
48	FIRST SYMPTOMS AND THEIR AGE OF ONSET IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2014, 34, 916-919.	1.0	37
49	Macular Telangiectasia Type 2. , 2014, , 111-118.		0
50	Macular telangiectasia type 2. Progress in Retinal and Eye Research, 2013, 34, 49-77.	7.3	311
51	α1AMP-Activated Protein Kinase Mediates Vascular Protective Effects of Exercise. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1632-1641.	1.1	32
52	Hyperglycemia and oxidative stress in cultured endothelial cells – a comparison of primary endothelial cells with an immortalized endothelial cell line. Journal of Diabetes and Its Complications, 2012, 26, 155-162.	1.2	37
53	Vascular Dysfunction in Streptozotocin-Induced Experimental Diabetes Strictly Depends on Insulin Deficiency. Journal of Vascular Research, 2011, 48, 275-284.	0.6	43
54	Nitroglycerin-Induced Endothelial Dysfunction and Tolerance Involve Adverse Phosphorylation and <i>S</i> -Glutathionylation of Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2223-2231.	1.1	92

#	Article	IF	CITATIONS
55	Vascular Dysfunction in Experimental Diabetes Is Improved by Pentaerithrityl Tetranitrate but Not Isosorbide-5-Mononitrate Therapy. Diabetes, 2011, 60, 2608-2616.	0.3	86
56	Vascular Dysfunction in Streptozotocininduced Experimental Diabetes Strictly Depends on Insulin Deficiency. Free Radical Biology and Medicine, 2010, 49, S38.	1.3	0