
Dmitriy Sokolov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1420875/publications.pdf Version: 2024-02-01

DMITRIX SOKOLOV

#	Article	IF	CITATIONS
1	A Multifaceted Approach for Cryogenic Waste Tire Recycling. Polymers, 2021, 13, 2494.	4.5	11
2	Transformation of cryovacuum condensates of ethanol near the glass transition temperature. Low Temperature Physics, 2013, 39, 714-718.	0.6	9
3	Physical modeling of the formation of clathrate hydrates of methane. Low Temperature Physics, 2015, 41, 429-434.	0.6	8
4	On the problem of the existence of a supercooled liquid phase of cryovacuum ethanol condensates. Physics of the Solid State, 2012, 54, 1475-1479.	0.6	6
5	Refractive indices and density of cryovacuum-deposited thin films of methane in the vicinity of the α-β-transition temperature. Low Temperature Physics, 2017, 43, 724-727.	0.6	5
6	IR spectrometric studies of thin film cryovacuum condensates of methane and methane-water mixtures. Low Temperature Physics, 2017, 43, 409-415.	0.6	5
7	Investigation of vapor cryodeposited glasses and glass transition of tetrachloromethane films. Applied Surface Science, 2020, 507, 144857.	6.1	5
8	On the stability of ethanol nanoclusters in a nitrogen cryomatrix. Low Temperature Physics, 2013, 39, 961-966.	0.6	4
9	Structure and phase transition peculiarities in solid nitrous oxide and attempts at their explanation. Low Temperature Physics, 2013, 39, 460-464.	0.6	4
10	Cryoemission of Nitrous Oxide and Ethanol: Dynamic and Energy Characteristics. Journal of Low Temperature Physics, 2017, 187, 71-79.	1.4	4
11	Refractive indices vs deposition temperature of thin films of ethanol, methane and nitrous oxide in the vicinity of their phase transition temperatures. Low Temperature Physics, 2017, 43, 1214-1216.	0.6	3
12	IR Studies of Thermally Stimulated Structural Phase Transformations in Cryovacuum Condensates of Freon 134a. Low Temperature Physics, 2018, 44, 831-839.	0.6	3
13	IR Spectrometry studies of methanol cryovacuum condensates. Low Temperature Physics, 2019, 45, 441-451.	0.6	3
14	Refractive Index at Low Temperature of Tetrachloromethane and Tetrafluoroethane Cryovacuum Condensates. ACS Omega, 2020, 5, 11671-11676.	3.5	3
15	Structural-phase transitions in solid nitrous oxide. Low Temperature Physics, 2012, 38, 1058-1062.	0.6	2
16	Structure transformations in thin films of CF3-CFH2 cryodeposites. Is there a glass transition and what is the value of Tg?. Applied Surface Science, 2018, 446, 196-200.	6.1	2
17	The study of thermophysical properties of rubber and plastic household waste to determine the temperature conditions of cryoprocessing. Applied Surface Science, 2020, 511, 145487.	6.1	2
18	On thermal stability of cryovacuum deposited CH4+H2O films. Low Temperature Physics, 2020, 46, 1121-1124.	0.6	2

#	Article	IF	CITATIONS
19	The Effect of the Cryosurface Materials on the Cryoemission Parameters of Some Gases. Journal of Low Temperature Physics, 2022, 206, 199-209.	1.4	2
20	Polarizability of Methane Deposits. Journal of Low Temperature Physics, 2017, 187, 749-756.	1.4	1
21	IR Studies of the Spin–Nuclear Conversion in the Vicinity of \$\$alpha \$\$ α - \$\$eta \$\$ β - Transition in Cryodeposited Methane Films. Journal of Low Temperature Physics, 2017, 187, 742-748.	1.4	Ο
22	Investigation of cryoemission characteristics during ethanol condensation. International Journal of Mathematics and Physics, 2014, 5, 61-63.	0.2	0
23	The phase transition between the orientational glass and plastic crystal in cryovacuum condensate of ethanol. International Journal of Mathematics and Physics, 2014, 5, 77-80.	0.2	Ο