
Jung-Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1420585/publications.pdf Version: 2024-02-01

Ιυνς-Ηνών Κιμ

#	Article	IF	CITATIONS
1	Water-Based Highly Stretchable PEDOT:PSS/Nonionic WPU Transparent Electrode. Polymers, 2022, 14, 949.	4.5	13
2	Dual-Cation Electrolytes Crosslinked with MXene for High-Performance Electrochromic Devices. Nanomaterials, 2021, 11, 874.	4.1	3
3	Multituning of Structural Color by Protonation and Conjugate Bases. ACS Applied Polymer Materials, 2021, 3, 2902-2910.	4.4	7
4	Design of highly stable and solution-processable electrochromic devices based on PEDOT:PSS. Organic Electronics, 2021, 93, 106106.	2.6	8
5	Comparison of the mechanical properties of polymer blend and main-chain conjugated copolymer films with donor–acceptor heterojunctions. Chemical Engineering Journal, 2021, 415, 128952.	12.7	8
6	High-Coloration Efficiency and Low-Power Consumption Electrochromic Film based on Multifunctional Conducting Polymer for Large Scale Smart Windows. ACS Applied Electronic Materials, 2021, 3, 4781-4792.	4.3	22
7	Highly Conductive PEDOT:PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Nanomaterials, 2020, 10, 2211.	4.1	30
8	Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices. Scientific Reports, 2020, 10, 16488.	3.3	25
9	Stretchable Hole Extraction Layer for Improved Stability in Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 8004-8010.	6.7	13
10	Work Function Engineering of Electrohydrodynamic-Jet-Printed PEDOT:PSS Electrodes for High-Performance Printed Electronics. ACS Applied Materials & Interfaces, 2020, 12, 17799-17805.	8.0	30
11	Synthesis of Stretchable, Environmentally Stable, Conducting Polymer PEDOT Using a Modified Acid Template Random Copolymer. Macromolecular Chemistry and Physics, 2020, 221, 1900465.	2.2	7
12	Colorimetric Visualization Using Polymeric Core–Shell Nanoparticles: Enhanced Sensitivity for Formaldehyde Gas Sensors. Polymers, 2020, 12, 998.	4.5	11
13	Effect of molecular weight distribution of PSSA on electrical conductivity of PEDOT:PSS. RSC Advances, 2019, 9, 4028-4034.	3.6	16
14	Improvement of PEDOT:PSS linearity <i>via</i> controlled addition process. RSC Advances, 2019, 9, 17318-17324.	3.6	22
15	Synthesis of Solution-Stable PEDOT-Coated Sulfonated Polystyrene Copolymer PEDOT:P(SS-co-St) Particles for All-Organic NIR-Shielding Films. Coatings, 2019, 9, 151.	2.6	5
16	Formation of a conductive overcoating layer based on hybrid composites to improve the stability of flexible transparent conductive films. RSC Advances, 2019, 9, 4428-4434.	3.6	5
17	Facile synthesis of P(EDOT/Ani) : PSS with enhanced heat shielding efficiency <i>via</i> two-stage shot growth. RSC Advances, 2018, 8, 12992-12998.	3.6	7
18	Synthesis of Poly(methyl methacrylate-co-butyl acrylate)/Perfluorosilyl Methacrylate Core-Shell Nanoparticles: Novel Approach for Optimization of Coating Process. Polymers, 2018, 10, 1186.	4.5	7

Јилд-Нуил Кім

#	Article	IF	CITATIONS
19	Influence of residual sodium ions on the structureÂand properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). RSC Advances, 2018, 8, 29044-29050.	3.6	23
20	Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18964-18973.	8.0	22
21	Electrical characteristics of heterogeneous polymer layers in PEDOT:PSS films. Journal of Materials Chemistry C, 2018, 6, 8906-8913.	5.5	32
22	Large-scalable RTCVD Graphene/PEDOT:PSS hybrid conductive film for application in transparent and flexible thermoelectric nanogenerators. RSC Advances, 2017, 7, 25237-25243.	3.6	46
23	Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells. Nanoscale, 2017, 9, 12677-12683.	5.6	18
24	Synthesis and Characterization of PEDOT:P(SS-co-VTMS) with Hydrophobic Properties and Excellent Thermal Stability. Polymers, 2016, 8, 189.	4.5	67
25	Influence of imidazoleâ€based acidity control of <scp>PEDOT:PSS</scp> on its electrical properties and environmental stability. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1530-1536.	2.1	36
26	Synthesis of conductive and transparent PEDOT:P(SS-co-PEGMA) with excellent water-, weather-, and chemical-stabilities for organic solar cells. RSC Advances, 2016, 6, 63296-63303.	3.6	21
27	Hybrid Silver Mesh Electrode for ITOâ€Free Flexible Polymer Solar Cells with Good Mechanical Stability. ChemSusChem, 2016, 9, 1042-1049.	6.8	36
28	N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. RSC Advances, 2016, 6, 37130-37135.	3.6	38
29	Purification of PEDOT:PSS by Ultrafiltration for Highly Conductive Transparent Electrode of Allâ€Printed Organic Devices. Advanced Materials, 2016, 28, 10149-10154.	21.0	66
30	Synthesis of curcumin/polyrhodanine nanocapsules with antimicrobial properties by oxidative polymerization using the Fenton reaction. Reactive and Functional Polymers, 2016, 109, 125-130.	4.1	6
31	Electronic Properties of Cu _{2–<i>x</i>} Se Nanocrystal Thin Films Treated with Short Ligand (S ^{2–} , SCN [–] , and Cl [–]) Solutions. Journal of Physical Chemistry C, 2016, 120, 14899-14905.	3.1	12
32	Thermoelectric Behavior of Conducting Polymers Hybridized with Inorganic Nanoparticles. Journal of Electronic Materials, 2016, 45, 2935-2942.	2.2	5
33	Aqueous chemical synthesis of tellurium nanowires using a polymeric template for thermoelectric materials. CrystEngComm, 2015, 17, 1092-1097.	2.6	36
34	Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Organic Electronics, 2015, 26, 191-199.	2.6	59
35	Preparation of Fe3O4-Embedded Poly(styrene)/Poly(thiophene) Core/Shell Nanoparticles and Their Hydrogel Patterns for Sensor Applications. Materials, 2014, 7, 195-205.	2.9	13
36	Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014, 7, 717-730.	10.4	383

Jung-Hyun Kim

#	Article	IF	CITATIONS
37	Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. Journal of Materials Chemistry A, 2014, 2, 6532-6539.	10.3	259
38	Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency. Journal of Materials Chemistry A, 2014, 2, 7288-7294.	10.3	210
39	Highly reliable AgNW/PEDOT:PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness. Journal of Materials Chemistry C, 2014, 2, 5636-5643.	5.5	105
40	Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. Journal of Materials Chemistry A, 2014, 2, 13380-13387.	10.3	101