Eilam Yalon

List of Publications by Citations

Source: https://exaly.com/author-pdf/1420557/eilam-yalon-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63
papers1,352
citations19
h-index36
g-index70
ext. papers1,745
ext. citations6.3
avg, IF4.68
L-index

#	Paper	IF	Citations
63	Recommended Methods to Study Resistive Switching Devices. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800143	6.4	297
62	Energy Dissipation in Monolayer MoS Electronics. <i>Nano Letters</i> , 2017 , 17, 3429-3433	11.5	134
61	Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. <i>Science Advances</i> , 2019 , 5, eaax1325	14.3	98
60	Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS by Raman Thermometry. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	87
59	Rapid Flame Synthesis of Atomically Thin MoO down to Monolayer Thickness for Effective Hole Doping of WSe. <i>Nano Letters</i> , 2017 , 17, 3854-3861	11.5	84
58	Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects. <i>Advanced Functional Materials</i> , 2020 , 30, 1901971	15.6	36
57	Nanoscale Heterogeneities in Monolayer MoSe2 Revealed by Correlated Scanning Probe Microscopy and Tip-Enhanced Raman Spectroscopy. <i>ACS Applied Nano Materials</i> , 2018 , 1, 572-579	5.6	34
56	Spatially Resolved Thermometry of Resistive Memory Devices. <i>Scientific Reports</i> , 2017 , 7, 15360	4.9	34
55	Uncovering the Effects of Metal Contacts on Monolayer MoS. ACS Nano, 2020, 14, 14798-14808	16.7	33
54	High Current Density in Monolayer MoS Doped by AlO. ACS Nano, 2021, 15, 1587-1596	16.7	33
53	Resistive Switching in \$hbox{HfO}_{2}\$ Probed by a MetallhsulatorBemiconductor Bipolar Transistor. <i>IEEE Electron Device Letters</i> , 2012 , 33, 11-13	4.4	31
52	Thermometry of Filamentary RRAM Devices. IEEE Transactions on Electron Devices, 2015, 62, 2972-2977	2.9	27
51	Detection of the insulating gap and conductive filament growth direction in resistive memories. <i>Nanoscale</i> , 2015 , 7, 15434-41	7.7	27
50	Evaluation of the local temperature of conductive filaments in resistive switching materials. <i>Nanotechnology</i> , 2012 , 23, 465201	3.4	27
49	Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. <i>Applied Physics Letters</i> , 2019 , 114, 082103	3.4	26
48	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. <i>APL Materials</i> , 2018 , 6, 080707	1 ^{5.7}	22
47	Dual-Layer Dielectric Stack for Thermally Isolated Low-Energy Phase-Change Memory. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 4496-4502	2.9	22

46	Understanding the switching mechanism of interfacial phase change memory. <i>Journal of Applied Physics</i> , 2019 , 125, 184501	2.5	21
45	Heat Dissipation in Resistive Switching Devices: Comparison of Thermal Simulations and Experimental Results. <i>IEEE Transactions on Electron Devices</i> , 2014 , 61, 1137-1144	2.9	20
44	Localized Heating and Switching in MoTe-Based Resistive Memory Devices. <i>Nano Letters</i> , 2020 , 20, 1461	-11467	19
43	Effective n-type doping of monolayer MoS2 by AlOx 2017 ,		19
42	On the direction of the conductive filament growth in valence change memory devices during electroforming. <i>Solid State Ionics</i> , 2015 , 276, 9-17	3.3	17
41	Towards ultimate scaling limits of phase-change memory 2016 ,		16
40	Improved Current Density and Contact Resistance in Bilayer MoSe Field Effect Transistors by AlO Capping. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	15
39	On the diameter dependence of metal-nanowire Schottky barrier height. <i>Journal of Applied Physics</i> , 2015 , 117, 034308	2.5	13
38	. IEEE Transactions on Electron Devices, 2019 , 66, 3816-3821	2.9	12
37	Radiofrequency Switches Based on Emerging Resistive Memory Technologies - A Survey. <i>Proceedings of the IEEE</i> , 2021 , 109, 77-95	14.3	12
36	Energy-Efficient Indirectly Heated Phase Change RF Switch. IEEE Electron Device Letters, 2019, 40, 455-4	· 5 484	11
35	Thermal transport across graphene step junctions. 2D Materials, 2019, 6, 011005	5.9	11
34	Effect of oxygen vacancies and strain on the phonon spectrum of HfO2 thin films. <i>Journal of Applied Physics</i> , 2017 , 121, 224101	2.5	8
33	Oxide 2D electron gases as a reservoir of defects for resistive switching. <i>Applied Physics Letters</i> , 2020 , 116, 223503	3.4	7
32	Role of temperature on structure and electrical properties of titanium nitride films grown by low pressure plasma enhanced atomic layer deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 032403	2.9	7
31	Validation and Extension of Local Temperature Evaluation of Conductive Filaments in RRAM Devices. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 3671-3677	2.9	6
30	Field-Induced Nucleation in the Presence of a Metal Electrode. Physical Review Applied, 2015, 3,	4.3	5
29	Understanding leakage currents through Al2O3 on SrTiO3. <i>Journal of Applied Physics</i> , 2019 , 126, 185301	2.5	5

28	Dual bipolar resistive switching in the sub-forming regime of HfO2 resistive switching devices. <i>Solid-State Electronics</i> , 2015 , 111, 238-242	1.7	5
27	A Degenerately Doped \$hbox{In}_{0.53}hbox{Ga}_{0.47} hbox{As}\$ Bipolar Junction Transistor. <i>IEEE Electron Device Letters</i> , 2011 , 32, 21-23	4.4	5
26	Direct measurement of nanoscale filamentary hot spots in resistive memory devices <i>Science Advances</i> , 2022 , 8, eabk1514	14.3	5
25	Tunneling Emitter Bipolar Transistor as a Characterization Tool for Dielectrics and their Interfaces. <i>ECS Transactions</i> , 2011 , 41, 325-334	1	4
24	Compact Modeling and Electrothermal Measurements of Indirectly Heated Phase-Change RF Switches. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 5182-5187	2.9	4
23	Uncovering Phase Change Memory Energy Limits by Sub-Nanosecond Probing of Power Dissipation Dynamics. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100217	6.4	4
22	Probing Self-Heating in RRAM Devices by Sub-100 nm Spatially Resolved Thermometry 2018 ,		4
21	Temperature of Conductive Nanofilaments in Hexagonal Boron Nitride Based Memristors Showing Threshold Resistive Switching. <i>Advanced Electronic Materials</i> ,2100580	6.4	4
20	Sub-Nanosecond Pulses Enable Partial Reset for Analog Phase Change Memory. <i>IEEE Electron Device Letters</i> , 2021 , 42, 1291-1294	4.4	4
19	A Dual-Band CMOS Low-Noise Amplifier using Memristor-Based Tunable Inductors 2019 ,		3
18	2014,		3
17	Comparison of Simulation and Measurement of Gate Leakage Current in Metal/Al2O3/GaN/AlGaN/AlN/GaN Capacitors. <i>IEEE Transactions on Electron Devices</i> , 2014 , 61, 3558-356	37.9	3
16	Band structure and electronic transport across Ta2O5/Nb:SrTiO3 interfaces. <i>Journal of Applied Physics</i> , 2020 , 128, 045306	2.5	3
15	Electrical and structural properties of conductive nitride films grown by plasma enhanced atomic		3
	layer deposition with significant ion bombardment effect. <i>Journal of Applied Physics</i> , 2020 , 128, 065301	2.5	
14	layer deposition with significant ion bombardment effect. <i>Journal of Applied Physics</i> , 2020 , 128, 065301 Energy-Efficient Phase Change Memory Programming by Nanosecond Pulses 2018 ,	2.5	2
	layer deposition with significant ion bombardment effect. <i>Journal of Applied Physics</i> , 2020 , 128, 065301	2.5	
14	layer deposition with significant ion bombardment effect. <i>Journal of Applied Physics</i> , 2020 , 128, 065301 Energy-Efficient Phase Change Memory Programming by Nanosecond Pulses 2018 ,	2.5	2

LIST OF PUBLICATIONS

10	Sub-Thermionic Steep Switching in Hole-Doped WSe2 Transistors 2018 ,		2	
9	Direct observation of power dissipation in monolayer MoS2 devices 2016 ,		1	
8	Heat dissipation mechanisms in resistive switching devices 2013,		1	
7	Thermal boundary conductance of the MOS2-SiO2 interface 2017 ,		1	
6	2013,		1	
5	Indirectly Heated Switch as a Platform for Nanosecond Probing of Phase Transition Properties in Chalcogenides. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 1298-1303	2.9	1	
4	Field Effect Transistors: Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects (Adv. Funct. Mater. 18/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070116	15.6		
3	Nanosession: Valence Change Memories - A Look Inside 2013 , 233-245			
2	Joule-heating induced phase transition in 1T-TaS2 near room temperature probed by thermal imaging of power dissipation. <i>Applied Physics Letters</i> , 2022 , 120, 083502	3.4		
1	Temperature-dependent thermal resistance of phase change memory. <i>Applied Physics Letters</i> , 2022 , 120, 113501	3.4		