Feiyue Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/142044/feiyue-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

134 6,302 45 75 g-index

150 7,081 6.6 5.82 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
134	Assessing sediment contamination in estuaries. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 3-22	3.8	388
133	Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1998 , 55, 2221-2243	2.4	361
132	Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1567-77	3.8	314
131	Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 2002, 187, 231-255	4.2	267
130	How does climate change influence Arctic mercury?. Science of the Total Environment, 2012, 414, 22-42	10.2	169
129	A mass balance inventory of mercury in the Arctic Ocean. <i>Environmental Chemistry</i> , 2008 , 5, 89	3.2	139
128	Spatial and temporal analysis of water chemistry records (1958\(\bar{\pi}\)000) in the Huanghe (Yellow River) basin. <i>Global Biogeochemical Cycles</i> , 2005 , 19,	5.9	120
127	Conducting Ecological Risk Assessments of Inorganic Metals and Metalloids: Current Status. <i>Human and Ecological Risk Assessment (HERA)</i> , 2003 , 9, 641-697	4.9	120
126	Biological implications of sulfide in sediment review focusing on sediment toxicity. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 2526-2532	3.8	118
125	Increasing contaminant burdens in an arctic fish, Burbot (Lota lota), in a warming climate. <i>Environmental Science & Environmental Science & Environme</i>	10.3	116
124	Pore water testing and analysis: the good, the bad, and the ugly. <i>Marine Pollution Bulletin</i> , 2002 , 44, 359	9- 6 . 6	107
123	The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. <i>Science of the Total Environment</i> , 2007 , 373, 178-95	10.2	100
122	. Environmental Toxicology and Chemistry, 1999 , 18, 2526	3.8	100
121	Modeling Sorption of Trace Metals on Natural Sediments by Surface Complexation Model. <i>Environmental Science & Environmental &</i>	10.3	99
120	Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. <i>Limnology and Oceanography</i> , 2004 , 49, 2276-2286	4.8	97
119	Atmospheric transport of mercury to the Tibetan Plateau. <i>Environmental Science & Environmental Scienc</i>	10.3	95
118	Appropriate Applications of Sediment Quality Values for Metals and Metalloids. <i>Environmental Science & Environmental </i>	10.3	95

(2004-2016)

117	Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. <i>Environmental Science & Environmental Scienc</i>	10.3	93
116	Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada. <i>Environmental Science & Environmental Sc</i>	10.3	93
115	The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. <i>Environmental Chemistry</i> , 2012 , 9, 321	3.2	92
114	Chemical demethylation of methylmercury by selenoamino acids. <i>Chemical Research in Toxicology</i> , 2010 , 23, 1202-6	4	91
113	Assessing and managing sediment contamination in transitional waters. <i>Environment International</i> , 2013 , 55, 71-91	12.9	88
112	Effects of acute and subchronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout. <i>Aquatic Toxicology</i> , 2007 , 83, 263-71	5.1	81
111	Mercury distribution and deposition in glacier snow over western China. <i>Environmental Science & Environmental & Environmental</i>	10.3	79
110	Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1323-1335	6.8	70
109	Comparison of mercury concentrations measured at several sites in the Southern Hemisphere. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3125-3133	6.8	69
108	Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). <i>Applied Geochemistry</i> , 2007 , 22, 1668-1679	3.5	67
107	In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters. <i>Environmental Science & Environmental Science & Environ</i>	10.3	67
106	Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis. <i>Journal of Analytical Atomic Spectrometry</i> , 2009 , 24, 663	3.7	66
105	Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. <i>Nature Communications</i> , 2018 , 9, 4796	17.4	66
104	Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. <i>Environmental Science & Environmental Science & Env</i>	10.3	66
103	Issues in Ecological Risk Assessment of Inorganic Metals and Metalloids. <i>Human and Ecological Risk Assessment (HERA)</i> , 2000 , 6, 965-988	4.9	65
102	Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. <i>Cryosphere</i> , 2015 , 9, 1213-1222	5.5	63
101	Ikaite crystal distribution in winter sea ice and implications for CO₂ system dynamics. <i>Cryosphere</i> , 2013 , 7, 707-718	5.5	63
100	Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature. <i>Chemosphere</i> , 2004 , 57, 1713-24	8.4	63

99	Relation of sediment characteristics to trace metal concentrations: a statistical study. <i>Water Research</i> , 2000 , 34, 694-698	12.5	60
98	Metal speciation measurement by diffusive gradients in thin films technique with different binding phases. <i>Analytica Chimica Acta</i> , 2005 , 533, 193-202	6.6	58
97	Mercury biomagnification in marine zooplankton food webs in Hudson Bay. <i>Environmental Science & Environmental & Environmental</i>	10.3	57
96	The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study. <i>Environmental Health</i> , 2010 , 9, 77	6	54
95	Mercury transformations and fluxes in sediments of a riverine wetland. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 3393-3406	5.5	54
94	Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. <i>Atmospheric Environment</i> , 2010 , 44, 1672-16	58 ⁵ 1 ³	53
93	Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. <i>Environmental Science & Environmental Scienc</i>	10.3	52
92	Geographical variations of trace elements in sediments of the major rivers in eastern China. <i>Environmental Geology</i> , 2000 , 39, 1334-1340		51
91	Zero-valent sulfur and metal speciation in sediment porewaters of freshwater lakes. <i>Environmental Science & Environmental Sci</i>	10.3	47
90	Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in Western Canada. <i>Environmental Science & Environmental Science & Envi</i>	10.3	46
89	Trace metal speciation measurements in waters by the liquid binding phase DGT device. <i>Talanta</i> , 2005 , 67, 571-8	6.2	45
88	Persistent organic pollutants and mercury in the Himalaya. <i>Aquatic Ecosystem Health and Management</i> , 2005 , 8, 223-233	1.4	45
87	Metal-sulfide species in oxic waters. <i>Analytica Chimica Acta</i> , 2005 , 528, 183-195	6.6	44
86	Oxygen measurements in the burrows of freshwater insects. <i>Freshwater Biology</i> , 2001 , 46, 317-327	3.1	43
85	Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean. <i>Environmental Science & Environmental Science &</i>	10.3	41
84	Speciation of methylmercury in rice grown from a mercury mining area. <i>Environmental Pollution</i> , 2010 , 158, 3103-7	9.3	40
83	How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? - Implications for evaluating the effectiveness of the Minamata Convention. <i>Science of the Total Environment</i> , 2019 , 674, 58-70	10.2	39
82	Distribution and impacts of microplastic incorporation within sea ice. <i>Marine Pollution Bulletin</i> , 2019 , 145, 463-473	6.7	38

(2013-2011)

81	Methylmercury and selenium speciation in different tissues of beluga whales (Delphinapterus leucas) from the western Canadian Arctic. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2732-8	3.8	38
80	Field and satellite observations of the formation and distribution of Arctic atmospheric bromine above a rejuvenated sea ice cover. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		38
79	pH evolution in sea ice grown at an outdoor experimental facility. <i>Marine Chemistry</i> , 2013 , 154, 46-54	3.7	36
78	Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau. <i>Aquatic Geochemistry</i> , 2008 , 14, 321-336	1.7	36
77	Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. <i>Environmental Science & Environmental Science & Environme</i>	10.3	35
76	Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 1486-1505	3.7	34
75	Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling. <i>Science of the Total Environment</i> , 2008 , 406, 190-204	10.2	33
74	Voltammetric determination of elemental sulfur in pore waters. <i>Limnology and Oceanography</i> , 1998 , 43, 1353-1361	4.8	33
73	Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters. <i>Talanta</i> , 2012 , 97, 550-6	6.2	31
72	Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau. <i>Quaternary International</i> , 2009 , 208, 151-157	2	31
71	Speciated atmospheric mercury on haze and non-haze days in an inland city in China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13807-13821	6.8	30
70	Characterization of organic matter in surface sediments of the Mackenzie River Basin, Canada. <i>International Journal of Coal Geology</i> , 2009 , 77, 416-423	5.5	30
69	700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain). <i>Atmospheric Environment</i> , 2017 , 155, 97-107	5.3	28
68	Total and methylated mercury in Arctic multiyear sea ice. <i>Environmental Science & Environmental Scien</i>	10.3	28
67	Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. <i>Environmental Science & Environmental Science & Envir</i>	10.3	28
66	Measurement of stable and radioactive cesium in natural waters by the diffusive gradients in thin films technique with new selective binding phases. <i>Analytical Chemistry</i> , 2009 , 81, 5889-95	7.8	27
65	Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. <i>Organic Geochemistry</i> , 2014 , 68, 52-60	3.1	26
64	Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas). <i>Science of the Total Environment</i> , 2013 , 456-457, 278-86	10.2	26

63	Gypsum crystals observed in experimental and natural sea ice. <i>Geophysical Research Letters</i> , 2013 , 40, 6362-6367	4.9	26
62	Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. <i>Scientific Reports</i> , 2018 , 8, 14465	4.9	26
61	Selenium concentration, speciation and behavior in surface waters of the Canadian prairies. <i>Science of the Total Environment</i> , 2009 , 407, 5869-76	10.2	25
60	Environmental Mercury Chemistry - In Silico. <i>Accounts of Chemical Research</i> , 2019 , 52, 379-388	24.3	24
59	Consequences of change and variability in sea ice on marine ecosystem and biogeochemical processes during the 2007\(\textit{\textit{0}} 008 \) Canadian International Polar Year program. Climatic Change, 2012, 115, 135-159	4.5	24
58	Mercury contamination in aquatic ecosystems under a changing environment: Implications for the Three Gorges Reservoir. <i>Science Bulletin</i> , 2013 , 58, 141-149		23
57	Theoretical study of the reduction of uranium(VI) aquo complexes on titania particles and by alcohols. <i>Chemistry - A European Journal</i> , 2012 , 18, 7117-27	4.8	23
56	Total suspended particulate matter and toxic elements indoors during cooking with yak dung. <i>Atmospheric Environment</i> , 2009 , 43, 4243-4246	5.3	23
55	Underestimated Sink of Atmospheric Mercury in a Deglaciated Forest Chronosequence. <i>Environmental Science & Environmental Scie</i>	10.3	22
54	Temporal dynamics of ikaite in experimental sea ice. <i>Cryosphere</i> , 2014 , 8, 1469-1478	5.5	22
53	Reversible dissolution of glutathione-mediated HgSe(x)S(1-x) nanoparticles and possible significance in Hg-Se antagonism. <i>Chemical Research in Toxicology</i> , 2009 , 22, 1827-32	4	22
52	Synthesis, characterization and structures of methylmercury complexes with selenoamino acids. <i>Dalton Transactions</i> , 2009 , 5766-72	4.3	22
51	Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation. <i>Environmental Pollution</i> , 2018 , 237, 1112-1123	9.3	22
50	p-type conductivity in silicon nanowires induced by heterojunction interface charge transfer. <i>Applied Physics Letters</i> , 2010 , 97, 153126	3.4	21
49	Computational studies of structural, electronic, spectroscopic, and thermodynamic properties of methylmercury-amino acid complexes and their Se analogues. <i>Inorganic Chemistry</i> , 2010 , 49, 870-8	5.1	20
48	Sediment toxicity testing with the freshwater amphipod Hyalella azteca: relevance and application. <i>Chemosphere</i> , 2005 , 61, 1740-3; author reply 1744-5	8.4	20
47	Determination of mercury biogeochemical fluxes in the remote Mackenzie River Basin, northwest Canada, using speciation of sulfur and organic carbon. <i>Applied Geochemistry</i> , 2012 , 27, 815-824	3.5	19
46	Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2049-2055	11.5	17

45	Surface properties of natural aquatic sediments. Water Research, 1997, 31, 1796-1800	12.5	16
44	Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic. <i>Marine Ecology - Progress Series</i> , 2015 , 541, 91-	-104	16
43	Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30949-30956	11.5	16
42	Mercury methylation and demethylation potentials in Arctic lake sediments. <i>Chemosphere</i> , 2020 , 248, 126001	8.4	15
41	Cadmium Complexation with Bisulfide. Environmental Science & Eamp; Technology, 1999, 33, 4270-4277	10.3	14
40	Accumulation of Atmospheric Mercury in Glacier Cryoconite over Western China. <i>Environmental Science & Environmental &</i>	10.3	13
39	Does otolith chemistry indicate the natal habitat of Newfoundland capelin Mallotus villosus?. Journal of Experimental Marine Biology and Ecology, 2015 , 464, 88-95	2.1	13
38	Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 11271-83	3.4	12
37	Decoupling Natural and Anthropogenic Mercury and Lead Transport from South Asia to the Himalayas. <i>Environmental Science & Environmental Science & Env</i>	10.3	11
36	Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool. <i>Cold Regions Science and Technology</i> , 2015 , 119, 158-169	3.8	11
35	The overlooked role of the ocean in mercury cycling in the Arctic. <i>Marine Pollution Bulletin</i> , 2008 , 56, 1963-5	6.7	11
34	Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer. <i>Science of the Total Environment</i> , 2017 , 603-604, 510-518	10.2	10
33	Quantum-Chemical Study of the Diffusion of Hg(0, I, II) into the Ice(Ih). <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5151-5154	3.8	10
32	On the unusual holocene carbonate sediment in lake Nam Co, central Tibet. <i>Journal of Mountain Science</i> , 2009 , 6, 346-353	2.1	10
31	Global health effects of future atmospheric mercury emissions. <i>Nature Communications</i> , 2021 , 12, 3035	17.4	10
30	Fifty years of volcanic mercury emission research: Knowledge gaps and future directions. <i>Science of the Total Environment</i> , 2021 , 757, 143800	10.2	10
29	Density functional study of substituted (BH, B, DH, III) hydrated ions of Hg2+. <i>Theoretical Chemistry Accounts</i> , 2012 , 131, 1	1.9	9
28	Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice. <i>Journal of Geophysical Research: Oceans</i> , 2013 , 118, 4746-4754	3.3	8

27	Metallomics of Mercury: Role of Thiol- and Selenol-Containing Biomolecules 2011 , 517-544		8
26	Misapplication of Equilibrium Partitioning Coefficients to Derive Metals Sediment Quality Values. <i>Marine Pollution Bulletin</i> , 1999 , 38, 423-425	6.7	7
25	Determining seawater mercury methylation and demethylation rates by the seawater incubation approach: A critique. <i>Marine Chemistry</i> , 2020 , 219, 103753	3.7	6
24	Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. <i>Continental Shelf Research</i> , 2018 , 156, 1-10	2.4	6
23	Chemical composition of river particulates in eastern China. <i>Geo Journal</i> , 1996 , 40, 31	2.2	6
22	Climate change and mercury in the Arctic: Abiotic interactions <i>Science of the Total Environment</i> , 2022 , 824, 153715	10.2	6
21	Comparison of mercury concentrations measured at several sites in the Southern Hemisphere		5
20	Decapitation of high-altitude glaciers on the Tibetan Plateau revealed by ice core tritium and mercury records		5
19	The Stability of Metal Profiles in Freshwater and Marine Sediments. <i>Developments in Paleoenvironmental Research</i> , 2015 , 35-60		5
18	Bromide and chloride distribution across the snow-sea ice-ocean interface: A comparative study between an Arctic coastal marine site and an experimental sea ice mesocosm. <i>Journal of Geophysical Research: Oceans</i> , 2016 , 121, 5535-5548	3.3	5
17	Henry@Law constant for CO2 in aqueous sodium chloride solutions at 1 atm and sub-zero (Celsius) temperatures. <i>Marine Chemistry</i> , 2018 , 207, 26-32	3.7	5
16	A mixture model approach to analyzing major element chemistry data of the Changjiang (Yangtze River). <i>Environmetrics</i> , 2005 , 16, 305-318	1.3	4
15	High mercury accumulation in deep-ocean hadal sediments. Scientific Reports, 2021, 11, 10970	4.9	4
14	Transport and transformation of contaminants in sea ice 2016 , 472-491		3
13	Assessment and improvement of the sea ice processing for dissolved inorganic carbon analysis. Limnology and Oceanography: Methods, 2018, 16, 83-91	2.6	2
12	Response to Borgmann et al. (2005)Bediment toxicity testing with Hyalella azteca. <i>Chemosphere</i> , 2005 , 61, 1744-1745	8.4	2
11	Effect of ikaite precipitation on phosphate removal in sea ice. <i>Polar Research</i> , 2020 , 39,	2	2
10	Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1811-1824	6.8	1

LIST OF PUBLICATIONS

9	Ikaite crystal distribution in Arctic winter sea ice and implications for CO ₂ system dynamics		1
8	Dynamic ikaite production and dissolution in sea ice Leontrol by temperature, salinity and <i>p</i> CO ₂ conditions		1
7	Anthropogenic and natural drivers of seesaw-like spatial patterns in precipitation mercury over western China. <i>Environmental Pollution</i> , 2022 , 307, 119525	9.3	1
6	Evaluation of the Chelex-DGT technique for the measurement of rare earth elements in the porewater of estuarine and arine sediments. <i>Talanta</i> , 2021 , 230, 122315	6.2	O
5	Elemental mercury in the marine boundary layer of North America: Temporal and spatial patterns. <i>Marine Chemistry</i> , 2020 , 220, 103755	3.7	
4	Water Chemistry of Major Rivers of China 2014 ,		
3	ZnO and ZnOBiO2 coreBhell structured fillers on properties of polycarbonate nanocomposites. <i>Plastics, Rubber and Composites</i> , 2010 , 39, 419-424	1.5	
2	Mercury in the Arctic: are we overlooking the ocean?. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 178-80	2.5	

1 Asia Œastern Asia **2009**, 306-317