
Chien-Wei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1420438/publications.pdf Version: 2024-02-01

CHIEN-M/FLM/LL

#	Article	IF	CITATIONS
1	An overview of theory and practice on process capability indices for quality assurance. International Journal of Production Economics, 2009, 117, 338-359.	5.1	256
2	An effective decision making method for product acceptance. Omega, 2007, 35, 12-21.	3.6	113
3	A variables sampling plan based on Cpmk for product acceptance determination. European Journal of Operational Research, 2008, 184, 549-560.	3.5	103
4	Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk. European Journal of Operational Research, 2012, 217, 560-566.	3.5	102
5	Variable sampling inspection for resubmitted lots based on process capability index Cpk for normally distributed items. Applied Mathematical Modelling, 2013, 37, 667-675.	2.2	99
6	Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of defectives. Omega, 2006, 34, 90-101.	3.6	90
7	Monitoring Multivariate Process Variability for Individual Observations. Journal of Quality Technology, 2007, 39, 258-278.	1.8	85
8	A resubmitted sampling scheme by variables inspection for controlling lot fraction nonconforming. International Journal of Production Research, 2014, 52, 3744-3754.	4.9	68
9	An efficient approach to determine cell formation, cell layout and intracellular machine sequence in cellular manufacturing systems. Computers and Industrial Engineering, 2013, 66, 438-450.	3.4	67
10	Variables sampling plans with PPM fraction of defectives and process loss consideration. Journal of the Operational Research Society, 2006, 57, 450-459.	2.1	66
11	Developing a variables repetitive group sampling plan based on process capability index <i>C</i> _{<i>pk</i>} with unknown mean and variance. Journal of Statistical Computation and Simulation, 2013, 83, 1507-1517.	0.7	63
12	A multivariate EWMA control chart for monitoring process variability with individual observations. IIE Transactions, 2005, 37, 1023-1035.	2.1	62
13	An efficient inspection scheme for variables based on Taguchi capability index. European Journal of Operational Research, 2012, 223, 116-122.	3.5	60
14	Decision-making in testing process performance with fuzzy data. European Journal of Operational Research, 2009, 193, 499-509.	3.5	54
15	Developing a sampling plan by variables inspection for controlling lot fraction of defectives. Applied Mathematical Modelling, 2014, 38, 2303-2310.	2.2	49
16	Capability-based quick switching sampling system for lot disposition. Applied Mathematical Modelling, 2017, 52, 131-144.	2.2	45
17	Procedure for supplier selection based on Cpm applied to super twisted nematic liquid crystal display processes. International Journal of Production Research, 2004, 42, 2719-2734.	4.9	43
18	Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss. International Journal of Production Research, 2017, 55, 2351-2364.	4.9	43

#	Article	IF	CITATIONS
19	Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes. Applied Physics Letters, 2011, 98, .	1.5	41
20	Design and Construction of a Variables Repetitive Group Sampling Plan for Unilateral Specification Limit. Communications in Statistics Part B: Simulation and Computation, 2014, 43, 1866-1878.	0.6	40
21	Assessing process capability based on Bayesian approach with subsamples. European Journal of Operational Research, 2008, 184, 207-228.	3.5	38
22	Mixed Acceptance Sampling Plans for Product Inspection Using Process Capability Index. Quality Engineering, 2014, 26, 450-459.	0.7	38
23	A flexible process-capability-qualified resubmission-allowed acceptance sampling scheme. Computers and Industrial Engineering, 2015, 80, 62-71.	3.4	38
24	A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 2016, 238, 355-373.	2.6	37
25	A quick switching sampling system by variables for controlling lot fraction nonconforming. International Journal of Production Research, 2016, 54, 1839-1849.	4.9	34
26	Variable-sampling plans based on lifetime-performance index under exponential distribution with censoring and its extensions. Applied Mathematical Modelling, 2018, 55, 81-93.	2.2	34
27	The construction of a modified sampling scheme by variables inspection based on the one-sided capability index. Computers and Industrial Engineering, 2018, 122, 87-94.	3.4	34
28	Capability Testing Based onCpm with Multiple Samples. Quality and Reliability Engineering International, 2005, 21, 29-42.	1.4	33
29	Assessing process capability based on the lower confidence bound of Cpk for asymmetric tolerances. European Journal of Operational Research, 2008, 190, 205-227.	3.5	33
30	Advanced dispatching rules for large-scale manufacturing systems. International Journal of Advanced Manufacturing Technology, 2013, 67, 1-3.	1.5	33
31	A Sampling Scheme for Resubmitted Lots Based on One-Sided Capability Indices. Quality Technology and Quantitative Management, 2015, 12, 501-515.	1.1	32
32	Developing a variables repetitive group sampling scheme by considering process yield and quality loss. International Journal of Production Research, 2015, 53, 2239-2251.	4.9	32
33	A Novel Lot Sentencing Method by Variables Inspection Considering Multiple Dependent State. Quality and Reliability Engineering International, 2016, 32, 985-994.	1.4	32
34	Production quality and yield assurance for processes with multiple independent characteristics. European Journal of Operational Research, 2006, 173, 637-647.	3.5	31
35	Design and construction of a variables multiple dependent state sampling plan based on process yield. European Journal of Industrial Engineering, 2015, 9, 819.	0.5	31
36	Designing a variables two-plan sampling system of type TNTVSS-(<i>n</i> _T , <i>n</i> _N ; <i>k</i>) for controlling process fraction nonconforming with unilateral specification limit. International Journal of Production Research, 2015, 53, 2011-2025.	4.9	30

#	Article	IF	CITATIONS
37	Bootstrap approach for supplier selection based on production yield. International Journal of Production Research, 2008, 46, 5211-5230.	4.9	29
38	Efficient methods for comparing two process yields – strategies on supplier selection. International Journal of Production Research, 2013, 51, 1587-1602.	4.9	29
39	Measuring manufacturing capability for couplers and wavelength division multiplexers. International Journal of Advanced Manufacturing Technology, 2005, 25, 533-541.	1.5	27
40	A Bayesian approach for assessing process precision based on multiple samples. European Journal of Operational Research, 2005, 165, 685-695.	3.5	26
41	A repetitive group sampling plan by variables inspection for product acceptance determination. European Journal of Industrial Engineering, 2015, 9, 308.	0.5	26
42	Process capability assessment for index Cpkbased on bayesian approach. Metrika, 2005, 61, 221-234.	0.5	25
43	A variables multiple dependent state sampling plan based on a one-sided capability index. Quality Engineering, 2017, 29, 719-729.	0.7	25
44	A new lot sentencing approach by variables inspection based on process yield. International Journal of Production Research, 2018, 56, 4087-4099.	4.9	24
45	An alternative approach to test process capability for unilateral specification with subsamples. International Journal of Production Research, 2007, 45, 5397-5415.	4.9	21
46	An efficient method for dynamic-demand joint replenishment problem with multiple suppliers and multiple vehicles. International Journal of Production Research, 2017, 55, 1065-1084.	4.9	21
47	A variable-type skip-lot sampling plan for products with a unilateral specification limit. International Journal of Production Research, 2021, 59, 4140-4156.	4.9	21
48	A variables-type multiple-dependent-state sampling plan based on the lifetime performance index under a Weibull distribution. Annals of Operations Research, 2022, 311, 381-399.	2.6	20
49	Using a novel approach to assess process performance in the presence of measurement errors. Journal of Statistical Computation and Simulation, 2011, 81, 301-314.	0.7	19
50	Design and construction of a variables switch-based sampling system for product acceptance determination. International Journal of Advanced Manufacturing Technology, 2019, 101, 2643-2652.	1.5	19
51	Estimating and testing process yield with imprecise data. Expert Systems With Applications, 2009, 36, 11006-11012.	4.4	18
52	Lifetime performance-qualified sampling system under a Weibull distribution with failure-censoring. Quality Engineering, 2021, 33, 404-416.	0.7	18
53	A lots-dependent variables sampling plan considering supplier's process loss and buyer's stipulated specifications requirement. International Journal of Production Research, 2015, 53, 6308-6319.	4.9	17
54	Processâ€capabilityâ€qualified adjustable multipleâ€dependentâ€state sampling plan for a longâ€term supplier–buyer relationship. Quality and Reliability Engineering International, 2021, 37, 583-597.	1.4	17

#	Article	IF	CITATIONS
55	Generalized Inference for Measuring Process Yield With the Contamination of Measurement Errors—Quality Control for Silicon Wafer Manufacturing Processes in the Semiconductor Industry. IEEE Transactions on Semiconductor Manufacturing, 2012, 25, 272-283.	1.4	16
56	Optimal process mean and quality improvement in a supply chain model with two-part trade credit based on Taguchi loss function. International Journal of Production Research, 2018, 56, 5234-5248.	4.9	16
57	An improved sampling plan by variables inspection with consideration of process yield and quality loss. Journal of Statistical Computation and Simulation, 2019, 89, 2395-2409.	0.7	16
58	Capability measure for asymmetric tolerance non-normal processes applied to speaker driver manufacturing. International Journal of Advanced Manufacturing Technology, 2005, 25, 506-515.	1.5	15
59	Generalized Confidence Intervals for Comparing the Capability of Two Processes. Communications in Statistics - Theory and Methods, 2010, 39, 2351-2364.	0.6	15
60	DEA window analysis for assessing efficiency of blistering process in a pharmaceutical industry. Neural Computing and Applications, 2019, 31, 3703-3717.	3.2	15
61	Design and construction of a variables quick switching sampling system based on Taguchi capability index. Computers and Industrial Engineering, 2021, 160, 107582.	3.4	15
62	Generalized confidence intervals for the process capability index C pm. Metrika, 2008, 68, 65-82.	0.5	14
63	Fuzzy nonlinear programming approach for evaluating and ranking process yields with imprecise data. Fuzzy Sets and Systems, 2014, 246, 142-155.	1.6	14
64	Quality-yield measure for production processes with very low fraction defective. International Journal of Production Research, 2004, 42, 4909-4925.	4.9	13
65	Distributional and Inferential Properties of the Process Loss Indices. Journal of Applied Statistics, 2004, 31, 1115-1135.	0.6	13
66	Accuracy Analysis of the Percentile Method for Estimating Non Normal Manufacturing Quality. Communications in Statistics Part B: Simulation and Computation, 2007, 36, 657-697.	0.6	13
67	Applying Bayesian approach to assess process capability for asymmetric tolerances based on <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mo>>â€3</mml:mo>></mml:mrow></mml:msubsup></mml:mrow><td>⟨m₂n₂mi isubsup≻<</td><td>13 :/mml:mrow></td></mml:math>	⟨m ₂n₂ mi isubsup≻<	13 :/mml:mrow>
68	An improved approach for process performance evaluation with the consideration of process yield and quality loss. International Journal of Production Research, 2013, 51, 6397-6409.	4.9	13
69	A Situationally Sampleâ€6izeâ€Adjusted Sampling Scheme Based on Process Yield Verification. Quality and Reliability Engineering International, 2017, 33, 57-69.	1.4	13
70	Determining optimal process mean and quality improvement in a profit-maximization supply chain model. Quality Technology and Quantitative Management, 2019, 16, 154-169.	1.1	13
71	An integrated failure-censored sampling scheme for lifetime-performance verification and validation under a Weibull distribution. Quality Engineering, 2022, 34, 82-95.	0.7	13
72	Generalized confidence intervals for assessing process capability of multiple production lines. Quality and Reliability Engineering International, 2009, 25, 701-716.	1.4	12

#	Article	IF	CITATIONS
73	A Bayesian procedure for assessing process performance based on the third-generation capability index. Journal of Applied Statistics, 2009, 36, 1205-1223.	0.6	12
74	An improved approach for constructing lower confidence bound on process yield. European Journal of Industrial Engineering, 2012, 6, 369.	0.5	12
75	Fuzzy inference to supplier evaluation and selection based on quality index: a flexible approach. Neural Computing and Applications, 2013, 23, 117-127.	3.2	11
76	An adjustable inspection scheme for lot sentencing based on one-sided capability indices. Applied Mathematical Modelling, 2021, 96, 766-778.	2.2	11
77	Tool replacement for production with a low fraction of defectives. International Journal of Production Research, 2006, 44, 2313-2326.	4.9	10
78	Process performance evaluation based on Taguchi capability index with the consideration of measurement errors. International Journal of Systems Science, 2013, 44, 1386-1399.	3.7	10
79	Developing a variables two-plan sampling system for product acceptance determination. Communications in Statistics - Theory and Methods, 2017, 46, 706-720.	0.6	10
80	Bayesian approach for measuring EEPROM process capability based on the one-sided indices CPU and CPL. International Journal of Advanced Manufacturing Technology, 2006, 31, 135-144.	1.5	9
81	An integrated inventory model with quality improvement and two-part credit policy. Top, 2014, 22, 1042-1061.	1.1	9
82	Performance evaluation of processes with asymmetric tolerances in the presence of gauge measurement errors. Communications in Statistics - Theory and Methods, 2016, 45, 3011-3026.	0.6	9
83	Improved inspection scheme with a loss-based capability index. International Journal of Advanced Manufacturing Technology, 2019, 104, 1321-1331.	1.5	9
84	A modified sampling plan by variables with an adjustable mechanism for lot sentencing. Journal of the Operational Research Society, 2021, 72, 678-687.	2.1	9
85	Measuring Process Performance Based on Expected Loss with Asymmetric Tolerances. Journal of Applied Statistics, 2006, 33, 1105-1120.	0.6	8
86	A comparison of methods forsing loss-based capability index. Journal of Statistical Computation and Simulation, 2009, 79, 1129-1141.	0.7	8
87	An Integrated Inventory Model with Order-Size-Dependent Trade Credit and Quality Improvement. Procedia Computer Science, 2013, 17, 365-372.	1.2	8
88	Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives. Computational Statistics, 2021, 36, 1391-1413.	0.8	8
89	Developing a skip-lot sampling scheme by variables inspection using repetitive sampling as a reference plan. International Journal of Production Research, 2022, 60, 3018-3030.	4.9	8
90	Designing acceptance sampling plans based on the lifetime performance index under gamma distribution. International Journal of Advanced Manufacturing Technology, 2021, 115, 3409-3422.	1.5	8

#	Article	IF	CITATIONS
91	Process Performance Evaluation with Imprecise Information. Journal of Testing and Evaluation, 2010, 38, 102480.	0.4	8
92	Designing a yield-based skip-lot sampling plan for lot acceptance determination. Journal of the Operational Research Society, 0, , 1-22.	2.1	8
93	Procedures for testing manufacturing precision Cpbased on (\$ar{x}\$,R) or (\$ar{x}\$,S) control chart samples. International Journal of Advanced Manufacturing Technology, 2005, 25, 598-607.	1.5	7
94	Quality yield measure for processes with asymmetric tolerances. IIE Transactions, 2006, 38, 619-633.	2.1	7
95	A Bayesian approach for measuring process performance with asymmetric tolerances. European Journal of Industrial Engineering, 2012, 6, 347.	0.5	7
96	A flexible sampling scheme for variables inspection with loss consideration. Journal of Statistical Computation and Simulation, 2015, 85, 3766-3777.	0.7	7
97	Reliable confidence intervals for assessing normal process incapability. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 446-457.	0.6	7
98	Acceptance sampling schemes for two-parameter Lindley lifetime products under a truncated life test. Quality Technology and Quantitative Management, 0, , 1-14.	1.1	7
99	Multiple-process performance analysis chart based on process loss indices. International Journal of Systems Science, 2006, 37, 429-435.	3.7	6
100	On ranking multiple touch-screen panel suppliers through the CTQ: applied fuzzy techniques for inspection with unavoidable measurement errors. Neural Computing and Applications, 2014, 25, 481-490.	3.2	6
101	Testing and Ranking Multiple Wafer-Manufacturing Processes With Fuzzy-Quality Data. Journal of Testing and Evaluation, 2016, 44, 1970-1977.	0.4	6
102	Capability Testing Based on Subsamples: A Case on Photolithography Process Control in Wafer Fabrication. Journal of Testing and Evaluation, 2010, 38, 222-231.	0.4	6
103	An integrated operating mechanism for lot sentencing based on process yield. Quality Technology and Quantitative Management, 2022, 19, 139-152.	1.1	6
104	AN EFFECTIVE MODERN APPROACH FOR MEASURING HIGH-TECH PRODUCT MANUFACTURING PROCESS QUALITY. Journal of the Chinese Institute of Industrial Engineers, 2005, 22, 119-133.	0.5	5
105	Hybrid Genetic Algorithm for Solving Assembly Line Balancing Problem in Footwear Industry. Advanced Materials Research, 0, 939, 623-629.	0.3	5
106	Standardized lifetime-capability and warranty-return-rate-based suppliers qualification and selection with accelerated Weibull-life type II testing data. Communications in Statistics - Theory and Methods, 2022, 51, 8186-8204.	0.6	5
107	Design and construction of a quick-switching sampling system with a third-generation capability index. Communications in Statistics - Theory and Methods, 2023, 52, 3633-3651.	0.6	5
108	Two Tests for Supplier Selection Based on Process Yield. Journal of Testing and Evaluation, 2011, 39, 126-133.	0.4	5

#	Article	IF	CITATIONS
109	Stage-independent multiple sampling plan by variables inspection for lot determination based on the process capability index <i>C_{pk}</i> . International Journal of Production Research, 2023, 61, 3171-3183.	4.9	5
110	Bootstrap approach for estimating process quality yield with application to light emitting diodes. International Journal of Advanced Manufacturing Technology, 2005, 25, 560-570.	1.5	4
111	Fuzzy estimation for process loss assessment. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 1-6.	0.6	4
112	Prediction of paravalvular leak post transcatheter aortic valve replacement using a convolutional neural network. , 2018, , .		4
113	Evaluating process performance based on the incapability index for measurements with uncertainty. Expert Systems With Applications, 2010, 37, 5999-6006.	4.4	3
114	Duopoly competition with non-deceptive counterfeiters. International Review of Law and Economics, 2016, 47, 33-40.	0.5	3
115	Process Capability Assessment for Asymmetric Tolerances with Consideration of Gauge Measurement Errors. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 519-547.	0.6	3
116	Yieldâ€based variables repetitive group plan with a criticalâ€valueâ€adjusted mechanism. Quality and Reliability Engineering International, 2022, 38, 3017-3032.	1.4	3
117	A Bayesian Procedure for Assessing Process Performance Based on Expected Relative Loss with Asymmetric Tolerances. Journal of Applied Statistics, 2007, 34, 1109-1123.	0.6	2
118	A fuzzy-neural approach for optimizing the performance of job dispatching in a wafer fabrication factory. International Journal of Advanced Manufacturing Technology, 2013, 67, 189-202.	1.5	2
119	Turning counterfeiting into advantage: the case of a durable good monopolist. Applied Economics Letters, 2014, 21, 1122-1127.	1.0	2
120	Supplier selection based on normal process yield: the Bayesian inference. Neural Computing and Applications, 2020, 32, 4121-4133.	3.2	2
121	Assessing True TFT-LCD Process Quality in the Presence of Unavoidable Measurement Errors. Journal of Testing and Evaluation, 2015, 43, 20140103.	0.4	2
122	A repetitive group sampling plan based on the lifetime performance index under gamma distribution. Quality and Reliability Engineering International, 0, , .	1.4	2
123	On the Sampling Distributions of the Estimated Process Loss Indices with Asymmetric Tolerances. Communications in Statistics Part B: Simulation and Computation, 2007, 36, 1153-1170.	0.6	1
124	A Hypothesis Testing Procedure on Assessing Process Performance for Asymmetric Tolerances. Communications in Statistics - Theory and Methods, 2008, 37, 1959-1976.	0.6	1
125	Estimating and testing process accuracy with extension to asymmetric tolerances. Quality and Quantity, 2010, 44, 985-995.	2.0	1
126	An alternative approach to control tool wear problem with an application to grinding wheels management in manufacturing silicon wafers. Journal of Information and Optimization Sciences, 2010, 31, 231-244.	0.2	1

#	Article	IF	CITATIONS
127	A new lot sentencing method by variables inspection. , 2014, , .		1
128	Assessing S-Type Process Quality of Data Involving Batch-to-Batch Variation. Journal of Testing and Evaluation, 2017, 45, 1425-1435.	0.4	1
129	Developing a variables modified chain sampling plan with Taguchi capability index. Quality and Reliability Engineering International, 0, , .	1.4	1
130	Comparisons of frequentist and Bayesian inferences for interval estimation on process yield. Journal of the Operational Research Society, 2022, 73, 2694-2705.	2.1	1
131	Quality Technology and Quantitative Management Reliability Monitoring and Performance Measuring for the Exponential Failure Process. , 2007, , .		0
132	Measuring process yield by fuzzy lower confidence bounds. , 2010, , .		0
133	A novel approach for measuring the maximum process-loss information in multiple production line conditions. International Journal of Production Research, 2012, 50, 3809-3820.	4.9	0
134	A Tribute to George Box $\hat{a} \in$ "Statistical Methodologies and Applications Foreword. Quality Technology and Quantitative Management, 2015, 12, 1-3.	1.1	0
135	Developing a Variables Modified Chain Sampling Plan with Taguchi Capability Index. , 2020, , .		0
136	A new switching model for sampling plan based on process yield. , 2020, , .		0