
Keisuke Himoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1420363/publications.pdf Version: 2024-02-01

KEISLIKE HIMOTO

#	Article	IF	CITATIONS
1	Development and validation of a physics-based urban fire spread model. Fire Safety Journal, 2008, 43, 477-494.	3.1	78
2	Modeling thermal behaviors of window flame ejected from a fire compartment. Fire Safety Journal, 2009, 44, 230-240.	3.1	73
3	Modeling the trajectory of window flames with regard to flow attachment to the adjacent wall. Fire Safety Journal, 2009, 44, 250-258.	3.1	49
4	Transport Of Disk-shaped Firebrands In A Turbulent Boundary Layer. Fire Safety Science, 2005, 8, 433-444.	0.3	40
5	Comparative Analysis of Post-Earthquake Fires in Japan from 1995 to 2017. Fire Technology, 2019, 55, 935-961.	3.0	25
6	Statistical Modeling of Fire Occurrence Using Data from the TÅhoku, Japan Earthquake and Tsunami. Risk Analysis, 2016, 36, 378-395.	2.7	21
7	A Physically-Based Model for Urban Fire Spread. Fire Safety Science, 2003, 7, 129-140.	0.3	20
8	A field experiment on fire spread within a group of model houses. Fire Safety Journal, 2018, 96, 105-114.	3.1	18
9	A model for the fire-fighting activity of local residents in urban fires. Fire Safety Journal, 2012, 54, 154-166.	3.1	17
10	Summary of workshop for fire structure interaction and urban and wildland-urban interface (WUI) Fires–operation Tomodachi–fire research. Fire Safety Journal, 2013, 59, 122-131.	3.1	17
11	Quantification of cross-wind effect on temperature elevation in the downwind region of fire sources. Fire Safety Journal, 2019, 106, 114-123.	3.1	16
12	Conceptual framework for quantifying fire resilience – A new perspective on fire safety performance of buildings. Fire Safety Journal, 2021, 120, 103052.	3.1	16
13	Computational framework for assessing the fire resilience of buildings using the multi-layer zone model. Reliability Engineering and System Safety, 2021, 216, 108023.	8.9	13
14	Analysis of Ignitions Following 2011 Tohoku Earthquake Using Kawasumi Model. Fire Safety Science, 2014, 11, 704-717.	0.3	11
15	A Physics-Based Model for Post-Earthquake Fire Spread considering Damage to Building Components Caused by Seismic Motion and Heating by Fire. Earthquake Spectra, 2013, 29, 793-816.	3.1	10
16	A Post-Earthquake Fire Spread Model considering Damage of Building Components due to Seismic Motion and Heating of Fire. Fire Safety Science, 2011, 10, 1319-1330.	0.3	10
17	Risk and Behavior of Fire Spread in A Densely-built Urban Area. Fire Safety Science, 2008, 9, 267-278.	0.3	10
18	DEVELOPMENT OF A PHYSICS-BASED URBAN FIRE SPREAD MODEL. Journal of Environmental Engineering (Japan), 2006, 71, 15-22.	0.4	8

Кеізике Німото

#	Article	IF	CITATIONS
19	DEVELOPMENT OF A SIMPLIFIED MODEL FOR URBAN FIRE SPREAD BY USING A QUASI-STEADY CALCULATION METHOD. Journal of Environmental Engineering (Japan), 2010, 75, 9-18.	0.4	7
20	Probabilistic aspect of fire whirl generation around an L-shaped fire source in a crosswind. Fire Safety Journal, 2017, 88, 89-95.	3.1	7
21	Temperature elevation and trajectory in the downwind region of rectangular fire sources in cross-winds. Fire Safety Journal, 2020, 116, 103183.	3.1	6
22	Large Urban Fires in Japan: History and Management. Fire Technology, 2020, 56, 1885-1901.	3.0	6
23	Hierarchical Bayesian Modeling of Postâ€Earthquake Ignition Probabilities Considering Interâ€Earthquake Heterogeneity. Risk Analysis, 2020, 40, 1124-1138.	2.7	5
24	A Burning Model for Charring Materials and Its Application to the Compartment Fire Development. Fire Science and Technology, 2004, 23, 170-190.	0.5	5
25	A Study on the Estimation of the Evacuation Behaviors of Tokyo City Residents in the Kanto Earthquake Fire. Fire Safety Science, 2008, 9, 453-464.	0.3	5
26	A TRAJECTORY MODEL OF FLAME/PLUME EJECTED FROM A FIRE COMPARTMENT WITH REGARD TO THE WALL EFFECT ABOVE THE OPENING : A study on fire spread caused by flame/plume ejected from the opening Part 2. Journal of Environmental Engineering (Japan), 2006, 71, 1-6.	0.4	5
27	A STUDY ON THE ESTIMATION OF THE EVACUATION BEHAVIORS OF TOKYO CITY RESIDENTS IN THE KANTO EARTHQUAKE FIRE. Journal of Environmental Engineering (Japan), 2009, 74, 105-114.	0.4	4
28	Risk of Fire Spread in Densely Built Environments – A Review Emphasizing Cities in Japan –. Journal of Disaster Research, 2007, 2, 276-283.	0.7	4
29	TEMPERATURE AND TRAJECTORY OF FLAME/PLUME EJECTED FROM A MECHANICALLY AIR-SUPPLIED FIRE COMPARTMENT : A study on fire spread caused by flame/plume ejected from the opening Part 1. Journal of Environmental Engineering (Japan), 2005, 70, 1-8.	0.4	4
30	MODELING OF DESTINATION CHOICE FOR EVACUATION BY RESIDENTS IN POST-EARTHQUAKE FIRE EVENT. Journal of Environmental Engineering (Japan), 2011, 76, 469-477.	0.4	2
31	An Analysis of the Post-earthquake Fire Safety of Historic Buildings in Kyoto, Japan. Fire Technology, 2014, 50, 1107-1125.	3.0	2
32	PROBABILISTIC FIRE RISK ASSESSMENT OF A MID-RISE OR HIGH-RISE BUILDING WITH FIRE SAFETY EQUIPMENT SYSTEMS DAMAGED BY SEISMIC SHAKING. Journal of Environmental Engineering (Japan), 2016, 81, 855-863.	0.4	2
33	Generalization framework for varying characteristics of the firebrand generation and transport from structural fire source. Fire Safety Journal, 2021, 125, 103418.	3.1	2
34	A TRANSIENT BURNING MODEL FOR CHARRING MATERIAL AND ITS APPLICATION TO COMPARTMENT FIRE. Journal of Environmental Engineering (Japan), 2003, 68, 9-16.	0.4	2
35	A Risk-Based Approach to the Performance-Based Fire Safety Design of a Building in Regard to Preventing Building-to-Building Fire Spread. , 2020, , 421-433.		2
36	A FIRE FIGHTING ACTIVITY EXPERIMENT USING PORTABLE FIRE PUMPS FOR EVALUATION OF THE COMMUNITY-SCALE CAPABILITY OF FIRE PREVENTION. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2008, 73, 2665-2672.	0.3	1

Кеізике Німото

#	Article	IF	CITATIONS
37	FORESEEABILITY OF COLLAPSE OF WOODEN BUILDINGS BASED ON THE BEHAVIOR OF FIRE OBSERVED FROM OUTDOORS. All Journal of Technology and Design, 2011, 17, 191-194.	0.3	1
38	ANALYSIS OF IGNITIONS OUTSIDE OF THE TSUNAMI-INUNDATED AREAS FOLLOWING THE 2011 TOHOKU EARTHQUAKE. Journal of Environmental Engineering (Japan), 2014, 79, 219-226.	0.4	1
39	A RELATIVE-RISK-BASED METHOD FOR EVALUATING FIRE SPREAD PREVENTION PERFORMANCE OF BUILDINGS. Journal of Environmental Engineering (Japan), 2019, 84, 883-891.	0.4	1
40	Modeling of Recognition Degree of Refuge Areas by Kyoto City Residents in Post-earthquake Fire Event. Fire Safety Science, 2011, 10, 173-185.	0.3	1
41	A MODEL FOR POST-EARTHQUAKE FIRE SPREAD CONSIDERING STRUCTURAL DAMAGE OF BUILDINGS CAUSED BY SEISMIC MOTION AND ITS PROGRESSION DUE TO HEATING OF FIRE. Journal of Environmental Engineering (Japan), 2010, 75, 543-552.	0.4	0
42	BURN-DOWN RISK OF ARCHITECTURAL MONUMENTS SURROUNDED BY GROUP OF WOODEN HOUSES DUE TO POST-EARTHQUAKE FIRE SPREAD. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2011, 76, 2135-2142.	0.3	0
43	ESTIMATION OF DAY-LONG SPATIO-TEMPORAL DISTRIBUTION OF COMMUTERS IN THE METROPOLITAN AREA BASED ON THE NATION-WIDE STATISTICAL DATA. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2013, 78, 891-898.	0.3	0
44	HEAT TRANSFER TO AN EAVE DURING FLAME IMPINGEMENT. Journal of Environmental Engineering (Japan), 2015, 80, 305-313.	0.4	0
45	A BURNING MODEL FOR THE FIRE INVOLVED BUILDING WITH REGARD TO THE ROOM-TO-ROOM FIRE SPREAD. Journal of Environmental Engineering (Japan), 2003, 68, 1-8.	0.4	0
46	EVALUATION OF THE FIRE SPREAD PREVENTION PERFORMANCE OF BUILDINGS WITH WOODEN INTERIOR STRUCTURE. AIJ Journal of Technology and Design, 2020, 26, 591-596.	0.3	0