
Hironao Miyatake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1420336/publications.pdf Version: 2024-02-01

HIDONIAO MIVATAKE

#	Article	IF	CITATIONS
1	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A11.	5.1	31
2	Third data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2022, 74, 247-272.	2.5	117
3	The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey. Publication of the Astronomical Society of Japan, 2022, 74, 421-459.	2.5	31
4	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A14.	5.1	8
5	The Subaru HSC weak lensing mass-observable scaling relations of spectroscopic galaxy groups from the GAMA survey. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5408-5425.	4.4	5
6	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A4.	5.1	23
7	Lensing without borders – I. A blind comparison of the amplitude of galaxy–galaxy lensing between independent imaging surveys. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6150-6189.	4.4	12
8	Joint Survey Processing. I. Compact Oddballs in the COSMOS Field—Low-luminosity Quasars at z > 6?. Astrophysical Journal, 2022, 929, 66.	4.5	7
9	Full-shape cosmology analysis of the SDSS-III BOSS galaxy power spectrum using an emulator-based halo model: A 5% determination of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ïf </mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math> . Physical Review D 2022 105	4.7	50
10	Physical Review D. 2022, 105 HSC Year 1 cosmology results with the minimal bias method: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:miow><mml:mi>HSC</mml:mi><mml:mo stretchy="false">×<mml:mi>BOSS</mml:mi><mml:mrow></mml:mrow></mml:mo </mml:miow></mml:math 	4.7	14
11	galaxy-galaxy weak lensing and BOSS galaxy clustering. Physical Review D, 2022, 105, . LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results. Astrophysical Journal, 2022, 933, 84.	4.5	2
12	<tt>CLMM</tt> : a LSST-DESC cluster weak lensing mass modeling library for cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 508, 6092-6110.	4.4	3
13	The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel'dovich Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 253, 3.	7.7	118
14	Cosmology with the <i>Roman Space Telescope</i> : synergies with the Rubin Observatory Legacy Survey of Space and Time. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1514-1527.	4.4	24
15	Hundreds of weak lensing shear-selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S19A data. Publication of the Astronomical Society of Japan, 2021, 73, 817-829.	2.5	13
16	Cosmology with the <i>Roman Space Telescope</i> – multiprobe strategies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1746-1761.	4.4	36
17	The Stellar Mass in and around Isolated Central Galaxies: Connections to the Total Mass Distribution through Galaxy–Galaxy Lensing in the Hyper Suprime-Cam Survey. Astrophysical Journal, 2021, 919, 25.	4.5	11
18	Impact of point spread function higher moments error on weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1978-1993.	4.4	6

HIRONAO ΜΙΥΑΤΑΚΕ

#	Article	IF	CITATIONS
19	Validating a minimal galaxy bias method for cosmological parameter inference using HSC-SDSS mock catalogs. Physical Review D, 2020, 102, .	4.7	21
20	Weak lensing measurement of filamentary structure with the SDSS BOSS and Subaru Hyper Suprime-Cam data. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3695-3704.	4.4	2
21	Tomographic galaxy clustering with the Subaru Hyper Suprime-Cam first year public data release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 044-044.	5.4	41
22	Cross-correlation of the thermal Sunyaev–Zel'dovich effect and weak gravitational lensing: Planck and Subaru Hyper Suprime-Cam first-year data. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4780-4804.	4.4	26
23	Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	169
24	A comparative study of satellite galaxies in Milky Way-like galaxies from HSC, DECaLS, and SDSS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3776-3801.	4.4	22
25	Weak-lensing Analysis of X-Ray-selected XXL Galaxy Groups and Clusters with Subaru HSC Data. Astrophysical Journal, 2020, 890, 148.	4.5	45
26	FPFS Shear Estimator: Systematic Tests on the Hyper Suprime-Cam Survey First-year Data. Astrophysical Journal, Supplement Series, 2020, 251, 19.	7.7	3
27	Second data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	320
28	On the Assembly Bias of Cool Core Clusters Traced by HÎ \pm Nebulae. Astrophysical Journal, 2019, 882, 166.	4.5	1
29	Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from Polarbear and Cosmic Shear from Subaru Hyper Suprime-Cam. Astrophysical Journal, 2019, 882, 62.	4.5	20
30	Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel'dovich Clusters with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2019, 875, 63.	4.5	72
31	Mock galaxy shape catalogues in the Subaru Hyper Suprime-Cam Survey. Monthly Notices of the Royal Astronomical Society, 2019, 486, 52-69.	4.4	27
32	Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	413
33	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29.	4.5	126
34	The Hyper Suprime-Cam software pipeline. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	346
35	A large sample of shear-selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S16A Wide field mass maps. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	30
36	Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	42

HIRONAO ΜΙΥΑΤΑΚΕ

#	Article	IF	CITATIONS
37	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
38	Planck Sunyaev–Zel'dovich cluster mass calibration using Hyper Suprime-Cam weak lensing. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	33
39	The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	174
40	Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters. Astrophysical Journal, 2018, 854, 120.	4.5	68
41	The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel'dovich Effect Selected Cluster Catalog. Astrophysical Journal, Supplement Series, 2018, 235, 20.	7.7	121
42	Weak lensing shear calibration with simulations of the HSC survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3170-3195.	4.4	102
43	Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	35
44	Hyper Suprime-Cam: Camera dewar design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	162
45	The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	156
46	Multiwavelength study of X-ray luminous clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	7
47	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color–magnitude diagrams and radial profiles of red and blue galaxies at 0.1Â<Â <i>z</i> Â<Â1.1. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	23
48	Hyper Suprime-Cam: System design and verification of image quality. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	289
49	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	327
50	An optically-selected cluster catalog at redshift 0.1Â<Â <i>z</i> Â<Â1.1 from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	85
51	Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4853-4865.	4.4	32
52	Robust covariance estimation of galaxy–galaxy weak lensing: validation and limitation of jackknife covariance. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3476-3496.	4.4	38
53	Fundamental physics from future weak-lensing calibrated Sunyaev-Zel'dovich galaxy cluster counts. Physical Review D, 2017, 96, .	4.7	38
54	Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing. Physical Review Letters, 2017, 118, 161301.	7.8	19

HIRONAO ΜΙΥΑΤΑΚΕ

#	Article	IF	CITATIONS
55	Looking through the same lens: Shear calibration for LSST, Euclid, and WFIRST with stage 4 CMB lensing. Physical Review D, 2017, 95, .	4.7	63
56	Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 013-013.	5.4	48
57	Evidence of Halo Assembly Bias in Massive Clusters. Physical Review Letters, 2016, 116, 041301.	7.8	99
58	Detection of stacked filament lensing between SDSS luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2391-2400.	4.4	29
59	DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS. Astrophysical Journal, 2016, 825, 39.	4.5	135
60	GalSim: The modular galaxy image simulation toolkit. Astronomy and Computing, 2015, 10, 121-150.	1.7	256
61	THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS. Astrophysical Journal, 2015, 806, 1.	4.5	87
62	THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS. Astrophysical Journal, 2015, 806, 2.	4.5	124
63	GREAT3 results – I. Systematic errors in shear estimation and the impact of real galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2963-3007.	4.4	119
64	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
65	THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK. Astrophysical Journal, Supplement Series, 2014, 212, 5.	7.7	125
66	THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT. Astrophysical Journal, Supplement Series, 2014, 211, 17.	7.7	820
67	The GREAT3 challenge. Journal of Instrumentation, 2014, 9, C04031-C04031.	1.2	2
68	Development of database system for data obtained by Hyper Suprime-Cam on Subaru Telescope. , 2014, , .		1
69	Subaru weak lensing measurement of a z = 0.81 cluster discovered by the Atacama Cosmology Telescope Surveya~ Monthly Notices of the Royal Astronomical Society, 2013, 429, 3627-3644.	4.4	19
70	Hyper Suprime-Cam: performance of the CCD readout electronics. , 2012, , .		4
71	Readout Electronics for Hyper Suprime-Cam. Physics Procedia, 2012, 37, 1413-1420.	1.2	1
72	Back-End Readout Electronics for Hyper Suprime-Cam. IEEE Transactions on Nuclear Science, 2012, 59, 1767-1771.	2.0	5

HIRONAO MIYATAKE

#	Article	IF	CITATIONS
73	Hyper Suprime-Cam. Proceedings of SPIE, 2012, , .	0.8	242
74	Hyper Suprime-Cam: development of the CCD readout electronics. Proceedings of SPIE, 2010, , .	0.8	8
75	Hyper Suprime-Cam: camera design. Proceedings of SPIE, 2010, , .	0.8	13
76	Back-end readout electronics for Hyper Suprime-Cam. , 2010, , .		1
77	Hyper Suprime-Cam: CCD readout electronics. Proceedings of SPIE, 2008, , .	0.8	8
78	Hyper Suprime-Cam: back-end electronics for CCD readout. Proceedings of SPIE, 2008, , .	0.8	6
79	Prototype readout module for hyper suprime-cam. , 2008, , .		3
80	R&D status of readout system for a large photo cathode HAPD. , 2007, , .		1