Enrique Mariano Castrodeza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1419879/publications.pdf

Version: 2024-02-01

27 papers

393 citations

759233 12 h-index 19 g-index

27 all docs 27 docs citations

times ranked

27

365 citing authors

#	Article	IF	Citations
1	Effect of heat treatments and loading orientation on the tensile properties and fracture toughness of AlSi7Mg alloy produced by Laser Powder Bed Fusion. International Journal of Fracture, 2022, 235, 145-157.	2.2	6
2	Analysis of the S method for geometries where $\hat{\textbf{l}}$ depends on a/W. Engineering Fracture Mechanics, 2021, 241, 107416.	4.3	0
3	Influence of microstructure and porosity on the fracture toughness of Al-Si-Mg alloy. Journal of Materials Research and Technology, 2020, 9, 1286-1295.	5.8	15
4	Fatigue crack growth behavior of a selective laser melted AlSi10Mg. Engineering Fracture Mechanics, 2019, 217, 106564.	4.3	38
5	Effect of build orientation on fracture and tensile behavior of A357 Al alloy processed by Selective Laser Melting. Materials Science & Diplication (1383) and Diplication (1383) and Diplication (1383) and Diplication (1383).	5.6	39
6	Determination of mode I dynamic fracture toughness of IM7-8552 composites by digital image correlation and machine learning. Composite Structures, 2019, 210, 707-714.	5.8	14
7	Fracture toughness of high strength seamless pipe steel from SE(T) and SE(B) specimens evaluated by different standards. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 572-582.	3.4	1
8	Effect of displacement rate and subcritical crack growth on J-R curves of API X65 steels in sour environment. Engineering Fracture Mechanics, 2018, 190, 134-145.	4.3	3
9	Normalization method for J-R curve determination using SENT specimens. Engineering Fracture Mechanics, 2018, 199, 658-671.	4.3	10
10	Comparison of J–R curves and JC values of C(T) and M(T) specimens of bidirectional GLARE 3 5/4 0.3 fiber-metal laminates. Engineering Fracture Mechanics, 2016, 159, 79-89.	4.3	5
11	Production of 17CrMoV5-11 steel sponges utilising powder metallurgical replication technique with SiC as space holder. Powder Metallurgy, 2016, 59, 95-99.	1.7	2
12	CTODâ€R curves of the metalâ€clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1477-1487.	3.4	10
13	Crack growth resistance curves of GLARE 3 5/4 0.3 fiber–metal laminates at low temperature. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 268-275.	3.4	10
14	Performance of stainless steel foams produced by infiltration casting techniques. Journal of Materials Processing Technology, 2013, 213, 1846-1854.	6.3	28
15	Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities. Intermetallics, 2011, 19, 577-585.	3.9	20
16	Fatigue crack propagation in API 5L X-70 pipeline steel longitudinal welded joints under constant and variable amplitudes. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 321-328.	3.4	15
17	Processing and Characterization of Dual Phase Steel Foams Featured by Different Pore Distribution. Steel Research International, 2011, 82, 918-925.	1.8	10
18	Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime. Materials Letters, 2010, 64, 1448-1450.	2.6	26

ENRIQUE MARIANO

#	Article	IF	CITATION
19	Processing of Shape Memory CuZnAl Open-cell Foam by Molten Metal Infiltration. Journal of Materials Engineering and Performance, 2009, 18, 484-489.	2.5	28
20	Processing of brass open-cell foam by silica-gel beads replication. Journal of Materials Processing Technology, 2009, 209, 4958-4962.	6.3	25
21	Crack resistance curves of GLARE laminates by elastic compliance. Engineering Fracture Mechanics, 2006, 73, 2292-2303.	4.3	12
22	Residual strength of unidirectional fibreâ€metal laminates based on J C toughness of C(T) and SE(B) specimens: comparison with M(T) test results. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 923-929.	3.4	7
23	Fracture toughness evaluation of unidirectional fibre metal laminates using traditional CTOD (Î) and Schwalbe (Î'5) methodologies. Engineering Fracture Mechanics, 2004, 71, 1107-1118.	4.3	17
24	Critical fracture toughness, JC and δ5C, of unidirectional fibre–metal laminates. Thin-Walled Structures, 2003, 41, 1089-1101.	5. 3	21
25	Fracture Micromechanisms of Fibre-Metal Laminates: In-Situ SEM Observations. Journal of Composite Materials, 2002, 36, 387-400.	2.4	10
26	Experimental techniques for fracture instability toughness determination of unidirectional fibre metal laminates. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 999-1008.	3.4	20
27	Characterization and Comparative Study of Pseudo-Elastic Cu-Zn-Al Foams Synthesized by Two Different Methods. Materials Science Forum, 0, 738-739, 172-176.	0.3	1