
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1419414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Nehari manifold method for asymptotically periodic SchrĶdinger equations. Science China Mathematics, 2015, 58, 715-728.	1.7	120
2	Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete and Continuous Dynamical Systems, 2017, 37, 4973-5002.	0.9	100
3	On the planar Schrödinger-Poisson system with the axially symmetric potential. Journal of Differential Equations, 2020, 268, 945-976.	2.2	82
4	Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential. Journal of Mathematical Analysis and Applications, 2014, 420, 1762-1775.	1.0	71
5	Improved results for Klein-Gordon-Maxwell systems with general nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38, 2333-2348.	0.9	68
6	Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Advances in Nonlinear Analysis, 2019, 9, 413-437.	2.6	67
7	Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37, 4565-4583.	0.9	66
8	Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays. Neurocomputing, 2011, 74, 689-707.	5.9	62
9	Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Advances in Nonlinear Analysis, 2020, 9, 148-167.	2.6	61
10	Semiclassical ground state solutions for critical SchrĶdinger-Poisson systems with lower perturbations. Journal of Differential Equations, 2020, 268, 2672-2716.	2.2	60
11	Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth. Journal of Differential Equations, 2020, 269, 9144-9174.	2.2	51
12	Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \$\${mathbb{R}^{3}}\$ R 3. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	49
13	Berestycki-Lions conditions on ground state solutions for a Nonlinear Schrödinger equation with variable potentials. Advances in Nonlinear Analysis, 2019, 9, 496-515.	2.6	49
14	Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions. Journal of Differential Equations, 2020, 268, 4663-4690.	2.2	46
15	Nontrivial Solutions for Schrödinger Equation with Local Super-Quadratic Conditions. Journal of Dynamics and Differential Equations, 2019, 31, 369-383.	1.9	45
16	Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. Journal of Differential Equations, 2021, 275, 652-683.	2.2	44
17	Existence of multiple solutions of Kirchhoff type equation with sign-changing potential. Applied Mathematics and Computation, 2014, 242, 491-499.	2.2	42
18	Stability and bifurcation analysis of a delayed predator–prey model of prey dispersal in two-patch environments. Applied Mathematics and Computation, 2010, 216, 2920-2936.	2.2	35

#	Article	IF	CITATIONS
19	Infinitely many solutions for fourth-order elliptic equations with general potentials. Journal of Mathematical Analysis and Applications, 2013, 407, 359-368.	1.0	35
20	Ground state solutions of Nehari-Pohozaev type for the planar SchrĶdinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39, 5867-5889.	0.9	34
21	Existence of infinitely many solutions for a quasilinear elliptic equation. Applied Mathematics Letters, 2014, 37, 131-135.	2.7	32
22	Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Analysis: Theory, Methods & Applications, 2014, 95, 1-10.	1.1	32
23	On the planar Choquard equation with indefinite potential and critical exponential growth. Journal of Differential Equations, 2021, 285, 40-98. Existence and concentration of semiclassical ground state solutions for the generalized	2.2	29
24	Chern–Simons–Schr¶dinger system in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" id="d1e27" altimg="si17.gif"> <mml:msup> <mml:mrow> <mml:mi>H </mml:mi> </mml:mrow> <mml:mrow> <mml:mn> 1 <td>1:11 1:mn> <td>ml:mrow></td></td></mml:mn></mml:mrow></mml:msup></mml:math>	1:11 1:mn> <td>ml:mrow></td>	ml:mrow>
25	Nonlinear Analysis: Theory, Methods & Applications, 2019, 185, 68-96. Ground state solutions of SchrĶdinger–Poisson systems with variable potential and convolution nonlinearity. Journal of Mathematical Analysis and Applications, 2019, 473, 87-111.	1.0	27
26	Ground states for planar Hamiltonian elliptic systems with critical exponential growth. Journal of Differential Equations, 2022, 308, 130-159.	2.2	27
27	Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems. Complex Variables and Elliptic Equations, 2017, 62, 1093-1116.	0.8	26
28	Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems. Science China Mathematics, 2020, 63, 113-134.	1.7	26
29	Existence and Concentration of Solutions for the Chern–Simons–Schrödinger System with General Nonlinearity. Results in Mathematics, 2017, 71, 643-655.	0.8	25
30	Ground State Solutions for the Nonlinear Schrödinger–Bopp–Podolsky System with Critical Sobolev Exponent. Advanced Nonlinear Studies, 2020, 20, 511-538.	1.7	25
31	INFINITELY MANY SOLUTIONS FOR FOURTH-ORDER ELLIPTIC EQUATIONS WITH SIGN-CHANGING POTENTIAL. Taiwanese Journal of Mathematics, 2014, 18, .	0.4	24
32	Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations. Applied Mathematics Letters, 2017, 74, 20-26.	2.7	24
33	Infinitely many solutions and least energy solutions for Klein–Gordon–Maxwell systems with general superlinear nonlinearity. Computers and Mathematics With Applications, 2018, 75, 3358-3366.	2.7	24
34	Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	24
35	Infinitely many radial and non-radial solutions for a fractional Schrödinger equation. Computers and Mathematics With Applications, 2016, 71, 737-747.	2.7	21
36	Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases. Applied Mathematics and Optimization, 2021, 84, 773-806.	1.6	21

#	Article	IF	CITATIONS
37	Nehari Type Ground State Solutions for Asymptotically Periodic SchrĶdinger-Poisson Systems. Taiwanese Journal of Mathematics, 2017, 21, .	0.4	18
38	On the critical Schrödinger–Bopp–Podolsky system with general nonlinearities. Nonlinear Analysis: Theory, Methods & Applications, 2020, 195, 111734.	1.1	18
39	Subharmonic solutions for a class of non-quadratic second order Hamiltonian systems. Nonlinear Analysis: Real World Applications, 2012, 13, 113-130.	1.7	17
40	Geometrically distinct solutions for Klein–Gordon–Maxwell systems with super-linear nonlinearities. Applied Mathematics Letters, 2019, 90, 188-193.	2.7	17
41	Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential. Applied Mathematics Letters, 2017, 67, 40-45.	2.7	16
42	High energy solutions of modified quasilinear fourth-order elliptic equations with sign-changing potential. Computers and Mathematics With Applications, 2017, 73, 27-36.	2.7	16
43	Ground state and multiple solutions for the fractional Schrödinger–Poisson system with critical Sobolev exponent. Nonlinear Analysis: Real World Applications, 2018, 42, 24-52.	1.7	16
44	Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities. Journal of Mathematical Physics, 2018, 59, 081508.	1.1	16
45	Existence and asymptotic behavior of sign-changing solutions for fractional Kirchhoff-type problems in low dimensions. Nonlinear Differential Equations and Applications, 2018, 25, 1.	0.8	16
46	Solvability of sequential fractional order multi-point boundary value problems at resonance. Applied Mathematics and Computation, 2012, 218, 7638-7648.	2.2	15
47	Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity. Journal of Mathematical Physics, 2013, 54, .	1.1	15
48	Semiclassical solutions for a class of Schrödinger system with magnetic potentials. Journal of Mathematical Analysis and Applications, 2014, 414, 357-371.	1.0	15
49	Small Perturbations for Nonlinear SchrĶdinger Equations with Magnetic Potential. Milan Journal of Mathematics, 2020, 88, 479-506.	1.1	15
50	New Existence of Solutions for the Fractional p-Laplacian Equations with Sign-Changing Potential and Nonlinearity. Mediterranean Journal of Mathematics, 2016, 13, 3373-3387.	0.8	14
51	Ground state sign-changing solutions for a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. Journal of Fixed Point Theory and Applications, 2017, 19, 3127-3149.	1.1	14
52	On existence and concentration behavior of positive ground state solutions for a class of fractional SchrA¶dinger–Choquard equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	1.4	14
53	Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in â"2. Advances in Nonlinear Analysis, 2019, 9, 1066-1091.	2.6	14
54	Nehariâ€ŧype ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. Mathematical Methods in the Applied Sciences, 2020, 43, 6627-6638.	2.3	14

#	Article	IF	CITATIONS
55	Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity. Electronic Journal of Qualitative Theory of Differential Equations, 2019, , 1-13.	0.5	14
56	Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure and Applied Analysis, 2016, 15, 2161-2177.	0.8	14
57	Infinitely Many Sign-Changing Solutions for Kirchhoff-Type Equations in \$\$mathbb {R}^3\$\$ R 3. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42, 1055-1070.	0.9	13
58	Concentration behavior of ground states for a generalized quasilinear Choquard equation. Mathematical Methods in the Applied Sciences, 2020, 43, 3569-3585.	2.3	13
59	Infinitely many solutions for Kirchhoff problems with lack of compactness. Nonlinear Analysis: Theory, Methods & Applications, 2020, 197, 111856.	1.1	13
60	On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity. Calculus of Variations and Partial Differential Equations, 2021, 60, 1.	1.7	13
61	Nehari-type ground state solutions for a Choquard equation with doubly critical exponents. Advances in Nonlinear Analysis, 2020, 10, 152-171.	2.6	13
62	Stability and Bifurcation Analysis on a Ring of Five Neurons with Discrete Delays. Journal of Dynamical and Control Systems, 2013, 19, 237-275.	0.8	12
63	Ground State Solutions of Nehari–Pankov Type for a Superlinear Hamiltonian Elliptic System on â"≺sup> <i>N</i> . Canadian Mathematical Bulletin, 2015, 58, 651-663.	0.5	12
64	Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials. Journal of Mathematical Physics, 2019, 60, .	1.1	12
65	Concentration of solutions for fractional double-phase problems: critical and supercritical cases. Journal of Differential Equations, 2021, 302, 139-184.	2.2	12
66	On ground state solutions for superlinear Dirac equation. Acta Mathematica Scientia, 2014, 34, 840-850.	1.0	11
67	An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part. Computers and Mathematics With Applications, 2015, 70, 726-736.	2.7	11
68	Time-harmonic Maxwell equations with asymptotically linear polarization. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	11
69	Ground State Solutions for a Quasilinear SchrĶdinger Equation. Mediterranean Journal of Mathematics, 2017, 14, 1.	0.8	11
70	Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent. Journal of Mathematical Physics, 2018, 59, .	1.1	11
71	Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold. Journal of Geometric Analysis, 2020, 30, 1637-1660.	1.0	11
72	Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Variables and Elliptic Equations, 2020, 65, 1515-1547.	0.8	11

#	Article	IF	CITATIONS
73	Ground state solutions of the non-autonomous Schrödinger–Bopp–Podolsky system. Analysis and Mathematical Physics, 2022, 12, 1.	1.3	11
74	Ground state solutions for a diffusion system. Computers and Mathematics With Applications, 2015, 69, 337-346.	2.7	10
75	Existence and multiplicity of stationary solutions for a class of Maxwell–Dirac system. Nonlinear Analysis: Theory, Methods & Applications, 2015, 127, 298-311.	1.1	10
76	Ground states for diffusion system with periodic and asymptotically periodic nonlinearity. Computers and Mathematics With Applications, 2016, 71, 633-641.	2.7	10
77	Existence of multiple solutions for modified Schrödinger–Kirchhoff–Poisson type systems via perturbation method with sign-changing potential. Computers and Mathematics With Applications, 2017, 73, 505-519.	2.7	10
78	Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18, 493-517.	0.8	10
79	On the planar Kirchhoff-type problem involving supercritical exponential growth. Advances in Nonlinear Analysis, 2022, 11, 1412-1446.	2.6	10
80	On semiclassical ground state solutions for Hamiltonian elliptic systems. Applicable Analysis, 2015, 94, 1380-1396.	1.3	9
81	Ground states for nonlinear Maxwell–Dirac system with magnetic field. Journal of Mathematical Analysis and Applications, 2015, 421, 1573-1586.	1.0	9
82	Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity. Computers and Mathematics With Applications, 2016, 71, 1524-1536.	2.7	9
83	Sign-changing ground state solutions for discrete nonlinear SchrĶdinger equations. Journal of Difference Equations and Applications, 2019, 25, 202-218.	1.1	9
84	Nehari-type ground state solutions for Kirchhoff type problems in â" ^{<i>N</i>} . Applicable Analysis, 2019, 98, 1255-1266.	1.3	9
85	Existence of positive solutions for a class of critical fractional Schrödinger–Poisson system with potential vanishing at infinity. Applied Mathematics Letters, 2020, 99, 105984.	2.7	9
86	Ground states for a class of asymptotically linear fourth-order elliptic equations. Applicable Analysis, 2015, 94, 2168-2174.	1.3	8
87	Solutions on Asymptotically Periodic Elliptic System with New Conditions. Results in Mathematics, 2016, 70, 539-565.	0.8	8
88	Ground States for a Class of Generalized Quasilinear Schrödinger Equations in \$\${mathbb {R}}^N\$\$ R N. Mediterranean Journal of Mathematics, 2017, 14, 1.	0.8	8
89	Infinitely many solutions and least energy solutions for Klein–Gordon equation coupled with Born–Infeld theory. Complex Variables and Elliptic Equations, 2019, 64, 2077-2090.	0.8	8
90	Semiclassical solutions for linearly coupled Schrödinger equations without compactness. Complex Variables and Elliptic Equations, 2019, 64, 548-556.	0.8	8

#	Article	IF	CITATIONS
91	Normalized solutions for SchrĶdinger-Poisson equations with general nonlinearities. Journal of Mathematical Analysis and Applications, 2020, 481, 123447.	1.0	8
92	On critical Klein–Gordon–Maxwell systems with super-linear nonlinearities. Nonlinear Analysis: Theory, Methods & Applications, 2020, 196, 111771.	1.1	8
93	Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution. Journal of Geometric Analysis, 2022, 32, 1.	1.0	8
94	Ground state solutions for semilinear time-harmonic Maxwell equations. Journal of Mathematical Physics, 2016, 57, .	1.1	7
95	Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems. Mediterranean Journal of Mathematics, 2016, 13, 3673-3690.	0.8	7
96	Ground state solutions for asymptotically periodic fractional Schrödinger-Poisson problems with asymptotically cubic or super-cubic nonlinearities. Mathematical Methods in the Applied Sciences, 2017, 40, 4948.	2.3	7
97	Existence of ground state sign-changing solutions for a class of generalized quasilinear Schrödinger–Maxwell system in R3. Computers and Mathematics With Applications, 2017, 74, 466-481.	2.7	7
98	Infinitely many solutions for indefinite quasilinear Schrödinger equations under broken symmetry situations. Mathematical Methods in the Applied Sciences, 2017, 40, 979-991.	2.3	7
99	Positive, negative, and sign-changing solutions to a quasilinear Schrödinger equation with a parameter. Journal of Mathematical Physics, 2019, 60, 121510.	1.1	7
100	Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 569-586.	1.2	7
101	Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, 114, 1.	1.2	7
102	Planar Schrödinger-Poisson system with critical exponential growth in the zero mass case. Journal of Differential Equations, 2022, 327, 448-480.	2.2	7
103	Positive Solutions of Fractional Differential Inclusions at Resonance. Mediterranean Journal of Mathematics, 2013, 10, 1207-1220.	0.8	6
104	Existence of solutions for a class of second-order p-Laplacian systems with impulsive effects. Applications of Mathematics, 2014, 59, 543-570.	0.9	6
105	Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger–Poisson systems without compact condition. Computers and Mathematics With Applications, 2017, 74, 446-458.	2.7	6
106	New existence of multiple solutions for nonhomogeneous Schrödinger–Kirchhoff problems involving the fractional p-Laplacian with sign-changing potential. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2018, 112, 153-176.	1.2	6
107	Existence of ground state solutions for quasilinear SchrĶdinger equations with super-quadratic condition. Applied Mathematics Letters, 2018, 79, 27-33.	2.7	6
108	Radial ground state sign-changing solutions for a class of asymptotically cubic or super-cubic Schrödinger–Poisson type problems. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 627-643.	1.2	6

#	Article	IF	CITATIONS
109	Existence and Concentration Behavior of Ground State Solutions for a Class of Generalized Quasilinear Schrödinger Equations in â"№. Acta Mathematica Scientia, 2020, 40, 1495-1524.	1.0	6
110	Multiple solutions for fractional Kirchhoff equation with critical or supercritical nonlinearity. Applied Mathematics Letters, 2021, 119, 107204.	2.7	6
111	HOMOCLINIC ORBITS OF NONPERIODIC SUPERQUADRATIC HAMILTONIAN SYSTEM. Taiwanese Journal of Mathematics, 2013, 17, .	0.4	6
112	Periodic solutions for a differential inclusion problem involving the p(t)-Laplacian. Advances in Nonlinear Analysis, 2020, 10, 799-815.	2.6	6
113	Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18, 1547-1565.	0.8	6
114	Existence and non-existence of nontrivial solutions for Schrödinger systems via Nehari–Pohozaev manifold. Computers and Mathematics With Applications, 2017, 74, 3141-3160.	2.7	5
115	Multiple Solutions of Nonlinear SchrĶdinger Equations with the Fractional \$p\$-Laplacian. Taiwanese Journal of Mathematics, 2017, 21, .	0.4	5
116	Existence of ground state solutions of Nehari–Pohozaev type for fractional Schrödinger–Poisson systems with a general potential. Computers and Mathematics With Applications, 2018, 75, 614-631.	2.7	5
117	The Concentration Behavior of Ground States for a Class of Kirchhoff-type Problems with Hartree-type Nonlinearity. Advanced Nonlinear Studies, 2019, 19, 779-795.	1.7	5
118	Improved results for Klein–Gorden–Maxwell systems with critical growth. Applied Mathematics Letters, 2019, 91, 158-164.	2.7	5
119	Ground state solutions of fractional Choquard equations with general potentials and nonlinearities. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 2037-2057.	1.2	5
120	On multiplicity and concentration of solutions for a gauged nonlinear SchrĶdinger equation. Applicable Analysis, 2020, 99, 2001-2012.	1.3	5
121	Ground state solutions for the Chern–Simons–Schrödinger equations with general nonlinearity. Complex Variables and Elliptic Equations, 2020, 65, 1394-1411. Coupled elliptic systems in <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.8</td><td>5</td></mml:math>	0.8	5
122	display="inline" id="d1e22" altimg="si5.svg"> <mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi </mml:mrow><mml:mrow><mml:mi>N</mml:mi>with <mml:math <br="" display="inline" id="d1e32" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si6.svg"><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><ml:mi>N<</ml:mi></mml:mrow></mml:math></mml:mrow></mml:msup>	1.1	5
123	Laplacian and. Nonlinear Analysis: Theory, Methods & Applications, 2020, 201, 112066. Existence of Ground States for Kirchhoff-Type Problems with General Potentials. Journal of Geometric Analysis, 2021, 31, 7709-7725.	1.0	5
124	Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18, 3181-3200.	0.8	5
125	Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.9	5
126	Ground states for a system of nonlinear Schrödinger equations with singular potentials. Discrete and Continuous Dynamical Systems, 2022, .	0.9	5

#	Article	IF	CITATIONS
127	Existence of subharmonic solutions for non-quadratic second-order Hamiltonian systems. Boundary Value Problems, 2013, 2013, .	0.7	4
128	Non-constant Periodic Solutions for Second Order Hamiltonian System Involving the p-Laplacian. Advanced Nonlinear Studies, 2013, 13, 945-964.	1.7	4
129	Semi-classical solutions of perturbed elliptic system with general superlinear nonlinearity. Boundary Value Problems, 2014, 2014, .	0.7	4
130	Existence of ground state sign changing solutions for <i>p</i> ‣aplacian equations of Kirchhoff type. Mathematical Methods in the Applied Sciences, 2017, 40, 5056-5067.	2.3	4
131	Multiplicity and Concentration of Solutions for Fractional SchrĶdinger Equations. Taiwanese Journal of Mathematics, 2017, 21, .	0.4	4
132	Ground State Solutions for Asymptotically Periodic Kirchhoff-Type Equations with Asymptotically Cubic or Super-cubic Nonlinearities. Mediterranean Journal of Mathematics, 2017, 14, 1.	0.8	4
133	Ground state solutions for a class of nonlinear fractional Schrödinger–Poisson systems with super-quadratic nonlinearity. Chaos, Solitons and Fractals, 2017, 105, 189-194.	5.1	4
134	Semiclassical limits of ground states for Hamiltonian elliptic system with gradient term. Nonlinear Analysis: Real World Applications, 2018, 40, 377-402.	1.7	4
135	Nehari-type ground state solutions for asymptotically periodic fractional Kirchhoff-type problems in RN\$mathbb{R}^{N}. Boundary Value Problems, 2018, 2018, .	0.7	4
136	Existence and multiplicity of solutions for Kirchhoff type equations involving fractional p-Laplacian without compact condition. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 3147-3167.	1.2	4
137	Multiple solutions for fractional Schrödinger–Poisson system with critical or supercritical nonlinearity. Applied Mathematics Letters, 2021, 111, 106605.	2.7	4
138	Ground state solutions for planar coupled system involving nonlinear Schrödinger equations with critical exponential growth. Mathematical Methods in the Applied Sciences, 2021, 44, 9062-9078.	2.3	4
139	Existence of ground state solutions for Kirchhoff-type problem with variable potential. Applicable Analysis, 2023, 102, 168-181.	1.3	4
140	Multiple radial and nonradial normalized solutions for a quasilinear Schrödinger equation. Journal of Mathematical Analysis and Applications, 2021, 501, 125122.	1.0	4
141	HOMOCLINIC ORBITS FOR THE FIRST-ORDER HAMILTONIAN SYSTEM WITH SUPERQUADRATIC NONLINEARITY. Taiwanese Journal of Mathematics, 2015, 19, .	0.4	4
142	Large Perturbations of a Magnetic System with Stein–Weiss Convolution Nonlinearity. Journal of Geometric Analysis, 2022, 32, 1.	1.0	4
143	Existence and concentration of solutions for Schrödinger–Poisson system with steep potential well. Mathematical Methods in the Applied Sciences, 2016, 39, 2549-2557.	2.3	3
144	Ground state solutions of Nehariâ€Pankov type for a superlinear elliptic system on. Mathematical Methods in the Applied Sciences, 2017, 40, 729-740.	2.3	3

#	Article	IF	CITATIONS
145	Periodic Orbits for Radially Symmetric Systems with Singularities and Semilinear Growth. Results in Mathematics, 2017, 72, 1991-2011.	0.8	3
146	Ground State and Multiple Solutions for Kirchhoff Type Equations With Critical Exponent. Canadian Mathematical Bulletin, 2018, 61, 353-369.	0.5	3
147	Ground State Homoclinic Orbits for First-Order Hamiltonian System. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 1163-1182.	0.9	3
148	Existence and concentration properties of ground state solutions for elliptic systems. Complex Variables and Elliptic Equations, 2020, 65, 1257-1286.	0.8	3
149	Nehari-type ground state solutions for Schrödinger equations with Hardy potential and critical nonlinearities. Complex Variables and Elliptic Equations, 2020, 65, 1315-1335.	0.8	3
150	Ground state solutions for nonlinear Choquard equations with inverse-square potentials1. Asymptotic Analysis, 2020, 117, 141-160.	0.5	3
151	Existence and multiplicity of solutions for Dirichlet problem of p(x)-Laplacian type without the Ambrosetti-Rabinowitz condition. Journal of Mathematical Analysis and Applications, 2020, , 123882.	1.0	3
152	GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM. Journal of Applied Analysis and Computation, 2021, 11, 556-567.	0.5	3
153	Existence of positive solutions for a critical fractional Kirchhoff equation with potential vanishing at infinity. Mathematische Nachrichten, 2021, 294, 717-730.	0.8	3
154	Anisotropic Robin problems with logistic reaction. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	3
155	Global asymptotic behavior and boundedness of positive solutions to an odd-order rational difference equation. Computers and Mathematics With Applications, 2008, 56, 305-310.	2.7	2
156	Stationary solutions for a superlinear Dirac equation. Mathematical Methods in the Applied Sciences, 2016, 39, 796-805.	2.3	2
157	Infinitely many solutions for semilinear Δλ-Laplace equations with sign-changing potential and nonlinearity. Studia Scientiarum Mathematicarum Hungarica, 2017, 54, 536-549.	0.1	2
158	New Super-quadratic Conditions for Asymptotically Periodic Schrödinger Equations. Canadian Mathematical Bulletin, 2017, 60, 422-435.	0.5	2
159	Ground state sign-changing solutions for semilinear Dirichlet problems. Boundary Value Problems, 2018, 2018, .	0.7	2
160	Existence of ground state solutions for a class of nonlinear fractional Schrödinger–Poisson systems with super-quadratic nonlinearity. Complex Variables and Elliptic Equations, 2018, 63, 802-814.	0.8	2
161	Applications of Schauder's fixed point theorem to singular radially symmetric systems. Journal of Fixed Point Theory and Applications, 2019, 21, 1.	1.1	2
162	Ground state solutions to logarithmic Choquard equationsÂin R3. Mathematical Methods in the Applied Sciences, 2020, 43, 4222.	2.3	2

#	Article	IF	CITATIONS
163	On the Kleinâ€Gordonâ€Maxwell system with critical exponential growth in â"2. Mathematical Methods in the Applied Sciences, 2021, 44, 4071-4093.	2.3	2
164	Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3055.	1.1	2
165	High and low perturbations of Choquard equations with critical reaction and variable growth. Discrete and Continuous Dynamical Systems, 2022, 42, 1971.	0.9	2
166	Existence and Asymptotic Behavior of Ground States for Choquard–Pekar Equations with Hardy Potential and Critical Reaction. Journal of Geometric Analysis, 2022, 32, 1.	1.0	2
167	On the rational difference equation \$x_{n}=1+rac{(1-x_{n-k})(1-x_{n-l})(1-x_{n-m})}{x_{n-k}+x_{n-l}+x_{n-m}}\$. Journal of Applied Mathematics and Computing, 2011, 35, 63-71.	2.5	1
168	Infinitely many large energy solutions for superlinear Dirac equations. Mathematical Methods in the Applied Sciences, 2015, 38, 1485-1493.	2.3	1
169	Ground and bound states for non-linear Schrödinger systems with indefinite linear terms. Complex Variables and Elliptic Equations, 2017, 62, 1758-1781.	0.8	1
170	PERTURBATIONS FROM INDEFINITE SYMMETRIC ELLIPTIC BOUNDARY VALUE PROBLEMS. Glasgow Mathematical Journal, 2017, 59, 635-648.	0.3	1
171	Infinitely many solutions for indefinite impulsive differential equations perturbed from symmetry. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2017, 111, 753-764.	1.2	1
172	Nontrivial Solution for the Fractional p-Laplacian Equations via Perturbation Methods. Advances in Mathematical Physics, 2017, 2017, 1-9.	0.8	1
173	Timeâ€harmonic and asymptotically linear Maxwell equations in anisotropic media. Mathematical Methods in the Applied Sciences, 2018, 41, 317-335.	2.3	1
174	On the Existence of Ground State Solutions for Fractional Schrödinger–Poisson Systems with General Potentials and Super-quadratic Nonlinearity. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.8	1
175	Existence and concentration of positive solutions for Schrödinger-Poisson systems with steep well potential. Studia Scientiarum Mathematicarum Hungarica, 2018, 55, 53-93.	0.1	1
176	Radial ground state sign-changing solutions for asymptotically cubic or super-cubic fractional SchrĶdinger-Poisson systems. Complex Variables and Elliptic Equations, 2020, 65, 672-694.	0.8	1
177	Ground state solutions for Choquard equations with Hardy potentials and critical nonlinearity. Complex Variables and Elliptic Equations, 2022, 67, 1579-1597.	0.8	1
178	Ground state solutions of Schrödinger–Poisson systems with asymptotically constant potential. Asymptotic Analysis, 2021, 124, 29-49.	0.5	1
179	Ground state solutions for asymptotically periodic fractional Choquard equations. Electronic Journal of Qualitative Theory of Differential Equations, 2019, , 1-13.	0.5	1
180	Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2012, .	0.8	1

#	Article	IF	CITATIONS
181	On critical <i>N</i> â€Kirchhoff type equations involving Trudinger–Moser nonlinearity. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1
182	Ground state solutions for planar periodic Kirchhoff type equation with critical exponential growth. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1
183	Ground state solutions for asymptotically periodic linearly coupled SchrĶdinger equations with critical exponent. Kodai Mathematical Journal, 2017, 40, .	0.3	Ο
184	Ground state solutions of Pohoz̆aev type for the Choquard equation with external Coulomb potential and critical exponent. Applied Mathematics Letters, 2020, 99, 105988.	2.7	0
185	EXISTENCE AND GLOBAL STABILITY OF ALMOST AUTOMORPHIC SOLUTIONS FOR SHUNTING INHIBITORY CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS IN LEAKAGE TERMS ON TIME SCALES. Journal of Applied Analysis and Computation, 2018, 8, 1033-1049.	0.5	0
186	Nehari type ground state solutions for periodic Schrödinger–Poisson systems with variable growth. Complex Variables and Elliptic Equations, 0, , 1-16.	0.8	0
187	Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki–Lions type conditions. Analysis and Mathematical Physics, 2022, 12, 1.	1.3	Ο
188	The existence results for a class of generalized quasilinear Schrödinger equation with nonlocal term. Electronic Research Archive, 2022, 30, 1973-1998.	0.9	0
189	SchrA¶dinger equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/MathML<br">altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi </mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>with critical exponential growth and concave nonlinearities. Journal of Mathematical Analysis and</mml:mrow></mml:msup></mml:math>	nl:m@up><	:/monl:math>
190	Applications, 2022, 514, 126252. Combined effects in planar quasilinear SchrĶdinger equations with superlinear reaction. Asymptotic Analysis, 2022, , 1-22.	0.5	0
191	Oneâ€dimensional periodic fractional Schrödinger equations with exponential critical growth. Mathematical Methods in the Applied Sciences, 0, , .	2.3	0