
Jing Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1418836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 2022, 15, 130-134.	5.4	158
2	Warming and Increased Respiration Have Transformed an Alpine Steppe Ecosystem on the Tibetan Plateau From a Carbon Dioxide Sink Into a Source. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
3	Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests. Global Change Biology, 2022, 28, 4935-4946.	4.2	13
4	Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite Observations and Numerical Modeling. Geophysical Research Letters, 2022, 49, .	1.5	4
5	The missing pieces for better future predictions in subarctic ecosystems: A TornetrÃ s k case study. Ambio, 2021, 50, 375-392.	2.8	6
6	Chlorophyll-a concentrations in 82 large alpine lakes on the Tibetan Plateau during 2003–2017: temporal–spatial variations and influencing factors. International Journal of Digital Earth, 2021, 14, 714-735.	1.6	14
7	Satelliteâ€Observed Decreases in Water Turbidity in the Pearl River Estuary: Potential Linkage With Seaâ€Level Rise. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016842.	1.0	12
8	Volatile organic compound emission in tundra shrubs – Dependence on species characteristics and the near-surface environment. Environmental and Experimental Botany, 2021, 184, 104387.	2.0	13
9	An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery. Remote Sensing of Environment, 2021, 260, 112459.	4.6	17
10	Increasing importance of precipitation in spring phenology with decreasing latitudes in subtropical forest area in China. Agricultural and Forest Meteorology, 2021, 304-305, 108427.	1.9	18
11	Four-decade dynamics of the water color in 61 large lakes on the Yangtze Plain and the impacts of reclaimed aquaculture zones. Science of the Total Environment, 2021, 781, 146688.	3.9	8
12	Highâ€Resolution Mapping of Ice Cover Changes in Over 33,000 Lakes Across the North Temperate Zone. Geophysical Research Letters, 2021, 48, e2021GL095614.	1.5	9
13	Atmospheric brightening counteracts warmingâ€induced delays in autumn phenology of temperate trees in Europe. Global Ecology and Biogeography, 2021, 30, 2477-2487.	2.7	23
14	Influences of Shifted Vegetation Phenology on Runoff Across a Hydroclimatic Gradient. Frontiers in Plant Science, 2021, 12, 802664.	1.7	8
15	Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32476-32483.	3.3	31
16	Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts. Remote Sensing of Environment, 2020, 248, 111998.	4.6	63
17	Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements. Remote Sensing, 2020, 12, 2330.	1.8	6
18	Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. Environmental Pollution, 2020, 259, 113955.	3.7	26

Jing Tang

#	Article	IF	CITATIONS
19	Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sensing of Environment, 2020, 246, 111890.	4.6	115
20	Process Understanding of Soil BVOC Fluxes in Natural Ecosystems: A Review. Reviews of Geophysics, 2019, 57, 966-986.	9.0	50
21	A combined algorithm for automated drainage network extraction from digital elevation models. Hydrological Processes, 2018, 32, 1322-1333.	1.1	12
22	Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow. Science of the Total Environment, 2018, 622-623, 260-274.	3.9	20
23	Acclimation of Biogenic Volatile Organic Compound Emission From Subarctic Heath Under Longâ€Term Moderate Warming. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 95-105.	1.3	19
24	Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geoscientific Model Development, 2018, 11, 593-609.	1.3	21
25	Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology and Evolution, 2018, 2, 1443-1448.	3.4	112
26	Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem. Science of the Total Environment, 2017, 580, 1056-1067.	3.9	14
27	Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath. Biogeosciences, 2016, 13, 6651-6667.	1.3	21
28	Long-term coastal openness variation and its impact on sediment grain-size distribution: a case study from the Baltic Sea. Earth Surface Dynamics, 2016, 4, 773-780.	1.0	4
29	Investigating the influence of two different flow routing algorithms on soil–water–vegetation interactions using the dynamic ecosystem model LPJâ€GUESS. Ecohydrology, 2015, 8, 570-583.	1.1	16
30	Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution. Biogeosciences, 2015, 12, 2791-2808.	1.3	19
31	Generation of Spectral–Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 3140-3146.	2.3	225
32	Incorporating topographic indices into dynamic ecosystem modelling using LPJâ€GUESS. Ecohydrology, 2014, 7, 1147-1162.	1.1	13
33	Combining hyperspectral UAV and multispectral Formosat-2 imagery for precision agriculture applications. , 2014, , .		12
34	ESTIMATING SLOPE FROM RASTER DATA – A TEST OF EIGHT ALGORITHMS AT DIFFERENT RESOLUTIONS IN FL⁄ AND STEEP TERRAIN. Geodesy and Cartography, 2013, 39, 41-52.	^{\T} 0.2	12
35	Modelling Flow Routing in Permafrost Landscapes with <scp>TWI</scp> : An Evaluation against Siteâ€&pecific Wetness Measurements. Transactions in GIS, 2012, 16, 701-713.	1.0	8
36	Estimating slope from raster data: a test of eight different algorithms in flat, undulating and steep terrain. , 2011, , .		9