
Randall J Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1418630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bumble bee species distributions and habitat associations in the Midwestern USA, a region of declining diversity. Biodiversity and Conservation, 2021, 30, 865-887.	1.2	12
2	Selfing rates vary with floral display, pollinator visitation and plant density in natural populations of <i>Mimulusringens</i> . Journal of Evolutionary Biology, 2021, 34, 803-815.	0.8	18
3	Pollination intensity and paternity in flowering plants. Annals of Botany, 2020, 125, 1-9.	1.4	24
4	Not a melting pot: Plant species aggregate in their nonâ€native range. Global Ecology and Biogeography, 2020, 29, 482-490.	2.7	16
5	Edge effects and mating patterns in a bumblebee-pollinated plant. AoB PLANTS, 2020, 12, plaa033.	1.2	3
6	Hermaphroditism promotes mate diversity in flowering plants. American Journal of Botany, 2019, 106, 1131-1136.	0.8	14
7	Habitat Preference and Phenology of Nest Seeking and Foraging Spring Bumble Bee Queens in Northeastern North America (Hymenoptera: Apidae: Bombus). American Midland Naturalist, 2019, 182, 131.	0.2	25
8	Plant Mating Systems Often Vary Widely Among Populations. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	130
9	Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators. AoB PLANTS, 2017, 9, plx020.	1.2	30
10	Effects of pollination and postpollination processes on selfing rate in <i>Mimulus ringens</i> . American Journal of Botany, 2016, 103, 1524-1528.	0.8	15
11	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richnessâ€. Science, 2016, 351, 457-457.	6.0	5
12	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	6.0	315
13	Forecasting climate change impacts on the distribution of wetland habitat in the Midwestern United states. Global Change Biology, 2015, 21, 766-776.	4.2	20
14	Influence of Pollen Transport Dynamics on Sire Profiles and Multiple Paternity in Flowering Plants. PLoS ONE, 2013, 8, e76312.	1.1	27
15	Effects of floral display size on male and female reproductive success in Mimulus ringens. Annals of Botany, 2012, 109, 563-570.	1.4	104
16	Characterization of 42 polymorphic microsatellite loci in <i>Mimulus ringens</i> (Phrymaceae) using Illumina sequencing. American Journal of Botany, 2012, 99, e477-80.	0.8	6
17	New perspectives on the evolution of plant mating systems. Annals of Botany, 2012, 109, 493-503.	1.4	99
18	Influence of pollinator grooming on pollenâ€mediated gene dispersal in <i>Mimulus ringens</i> (Phrymaceae). Plant Species Biology, 2012, 27, 77-85.	0.6	43

RANDALL J MITCHELL

#	Article	IF	CITATIONS
19	Effects of multiple competitors for pollination on bumblebee foraging patterns and <i>Mimulus ringens</i> reproductive success. Oikos, 2011, 120, 200-207.	1.2	38
20	Nutrient amendments in a temperate grassland have greater negative impacts on early season and exotic plant species. Plant Ecology, 2011, 212, 853-864.	0.7	4
21	Increased relative abundance of an invasive competitor for pollination, Lythrum salicaria, reduces seed number in Mimulus ringens. Oecologia, 2010, 164, 445-454.	0.9	58
22	Interspecific pollinator movements reduce pollen deposition and seed production in <i>Mimulus ringens</i> (Phrymaceae). American Journal of Botany, 2009, 96, 809-815.	0.8	83
23	Pollinator visitation patterns strongly influence among-flower variation in selfing rate. Annals of Botany, 2009, 103, 1379-1383.	1.4	94
24	New frontiers in competition for pollination. Annals of Botany, 2009, 103, 1403-1413.	1.4	352
25	Ecology and evolution of plant–pollinator interactions. Annals of Botany, 2009, 103, 1355-1363.	1.4	172
26	Ovule number per flower in a world of unpredictable pollination. American Journal of Botany, 2009, 96, 1159-1167.	0.8	81
27	Effects of population size on performance and inbreeding depression in Lupinus perennis. Oecologia, 2008, 154, 651-661.	0.9	23
28	Predicting evolutionary consequences of pollinator declines: the long and short of floral evolution. New Phytologist, 2008, 177, 576-579.	3.5	20
29	Effects of Population Size and Density on Pollinator Visitation, Pollinator Behavior, and Pollen Tube Abundance in <i>Lupinus perennis</i> . International Journal of Plant Sciences, 2008, 169, 944-953.	0.6	50
30	Pre-meeting Conference; The Ecology and Evolution of Plant–Pollinator Interactions. Bulletin of the Ecological Society of America, 2008, 89, 481-484.	0.2	0
31	Multiple pollinator visits to <i>Mimulus ringens</i> (Phrymaceae) flowers increase mate number and seed set within fruits. American Journal of Botany, 2006, 93, 1306-1312.	0.8	63
32	Patterns of multiple paternity in fruits of <i>Mimulus ringens</i> (Phrymaceae). American Journal of Botany, 2005, 92, 885-890.	0.8	36
33	INTERSPECIFIC COMPETITION FOR POLLINATION LOWERS SEED PRODUCTION AND OUTCROSSING IN MIMULUS RINGENS. Ecology, 2005, 86, 762-771.	1.5	173
34	Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 467-497.	3.8	888
35	The influence of floral display size on selfing rates in Mimulus ringens. Heredity, 2004, 92, 242-248.	1.2	119
36	The influence of Mimulus ringens floral display size on pollinator visitation patterns. Functional Ecology, 2004, 18, 116-124.	1.7	212

RANDALL J MITCHELL

#	Article	IF	CITATIONS
37	POLLEN LIMITATION OF PLANT REPRODUCTION: ECOLOGICAL AND EVOLUTIONARY CAUSES AND CONSEQUENCES. Ecology, 2004, 85, 2408-2421.	1.5	1,004
38	HERITABILITY OF NECTAR TRAITS: WHY DO WE KNOW SO LITTLE?. Ecology, 2004, 85, 1527-1533.	1.5	87
39	COMPETITION FOR POLLINATION BETWEEN AN INVASIVE SPECIES (PURPLE LOOSESTRIFE) AND A NATIVE CONGENER. Ecology, 2002, 83, 2328-2336.	1.5	356
40	COMPETITION FOR POLLINATION BETWEEN AN INVASIVE SPECIES (PURPLE LOOSESTRIFE) AND A NATIVE CONGENER. , 2002, 83, 2328.		2
41	Competition for pollination: effects of pollen of an invasive plant on seed set of a native congener. Oecologia, 2001, 129, 43-49.	0.9	244
42	The demographic role of soil seed banks. II. Investigations of the fate of experimental seeds of the desert mustard Lesquerella fendleri. Journal of Ecology, 2000, 88, 293-302.	1.9	61
43	Using path analysis to measure natural selection. Journal of Evolutionary Biology, 2000, 13, 423-433.	0.8	160
44	Nonrandom mating and sexual selection in a desert mustard: an experimental approach. American Journal of Botany, 1998, 85, 48-55.	0.8	34
45	Do surface plant and soil seed bank populations differ genetically? a multipopulation study of the desert mustard Lesquerella fendleri (Brassicaceae). American Journal of Botany, 1998, 85, 1098-1109.	0.8	76
46	Pollinator Selection, Quantitative Genetics, and Predicted Evolutionary Responses of Floral Traits in Penstemon centranthifolius (Scrophulariaceae). International Journal of Plant Sciences, 1998, 159, 331-337.	0.6	43
47	Genetic Effects of Germination Timing and Environment: An Experimental Investigation. Evolution; International Journal of Organic Evolution, 1997, 51, 1427.	1.1	5
48	Do Plants Derived from Seeds that Readily Germinate Differ from Plants Derived from Seeds that Require Forcing to Germinate? A Case Study of the Desert Mustard Lesquerella fendleri. American Midland Naturalist, 1997, 138, 121.	0.2	10
49	Effects of Pollen Quantity on Progeny Vigor: Evidence from the Desert Mustard Lesquerella fendleri. Evolution; International Journal of Organic Evolution, 1997, 51, 1679.	1.1	18
50	GENETIC EFFECTS OF GERMINATION TIMING AND ENVIRONMENT: AN EXPERIMENTAL INVESTIGATION. Evolution; International Journal of Organic Evolution, 1997, 51, 1427-1434.	1,1	18
51	EFFECTS OF POLLEN QUANTITY ON PROGENY VIGOR: EVIDENCE FROM THE DESERT MUSTARD <i>LESQUERELLA FENDLERI</i> . Evolution; International Journal of Organic Evolution, 1997, 51, 1679-1684.	1.1	45
52	Effects of pollination intensity on Lesquerella fendleri seed set: variation among plants. Oecologia, 1997, 109, 382-388.	0.9	63
53	Effects of experimental manipulation of inflorescence size on pollination and pre-dispersal seed predation in the hummingbird-pollinated plant Ipomopsis aggregata. Oecologia, 1997, 110, 86-93.	0.9	165
54	Reproductive Success Increases with Local Density of Conspecif ics in a Desert Mustard (Lesquerella) Tj ETQq0 0	0 rgBT /Ov 2.4	verlock 10 Tf 117

Desierto (Lesquerella fendleri). Conservation Biology, 1997, 11, 738-746.

RANDALL J MITCHELL

#	Article	IF	CITATIONS
55	Using bud pollinations to avoid self-incompatibility: implications from studies of three mustards. Canadian Journal of Botany, 1996, 74, 285-289.	1.2	12
56	Effects of pollination method on paternal success in Lesquerella fendleri (Brassicaceae). American Journal of Botany, 1995, 82, 462-467.	0.8	20
57	Effects of pollination method on paternal success in Lesquerella fendleri (Brassicaceae). , 1995, 82, 462.		8
58	Effects of Floral Traits, Pollinator Visitation, and Plant Size on Ipomopsis aggregata Fruit Production. American Naturalist, 1994, 143, 870-889.	1.0	151
59	Heritability of floral traits for the perennial wild flower Penstemon centranthifolius (Scrophulariaceae): clones and crosses. Heredity, 1993, 71, 185-192.	1.2	96
60	Species concepts. Nature, 1993, 364, 20-20.	13.7	5
61	Adaptive Significance of Ipomopsis aggregata Nectar Production: Observation and Experiment in the Field. Evolution; International Journal of Organic Evolution, 1993, 47, 25.	1.1	60
62	ADAPTIVE SIGNIFICANCE OF IPOMOPSIS AGGREGATA NECTAR PRODUCTION: OBSERVATION AND EXPERIMENT IN THE FIELD. Evolution; International Journal of Organic Evolution, 1993, 47, 25-35.	1.1	139
63	Testing Evolutionary and Ecological Hypotheses Using Path Analysis and Structural Equation Modelling. Functional Ecology, 1992, 6, 123.	1.7	287
64	Adaptive Significance of Ipomopsis Aggregata Nectar Production: Pollination Success of Single Flowers. Ecology, 1992, 73, 633-638.	1.5	120
65	Components of Phenotypic Selection: Pollen Export and Flower Corrolla Width in Ipomopsis aggregata. Evolution; International Journal of Organic Evolution, 1991, 45, 1458.	1.1	105
66	COMPONENTS OF PHENOTYPIC SELECTION: POLLEN EXPORT AND FLOWER COROLLA WIDTH IN <i>IPOMOPSIS AGGREGATA</i> . Evolution; International Journal of Organic Evolution, 1991, 45, 1458-1467.	1.1	231
67	Effects of nectar volume and concentration on sugar intake rates of Australian honeyeaters (Meliphagidae). Oecologia, 1990, 83, 238-246.	0.9	41
68	Nectar Standing Crops in Delphinium Nelsonii Flowers: Spatial Autocorrelation among Plants?. Ecology, 1990, 71, 116-123.	1.5	45