
Chunfei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1418526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 2019, 659, 473-490.	3.9	310
2	State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry, 2018, 20, 5031-5057.	4.6	256
3	Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis, 2012, 94, 99-107.	2.6	254
4	Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Applied Catalysis B: Environmental, 2009, 87, 152-161.	10.8	245
5	Oneâ€Step Reforming of CO ₂ and CH ₄ into Highâ€Value Liquid Chemicals and Fuels at Room Temperature by Plasmaâ€Đriven Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13679-13683.	7.2	244
6	A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renewable and Sustainable Energy Reviews, 2021, 135, 109702.	8.2	234
7	Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology, 2016, 216, 159-164.	4.8	215
8	Plasma-photocatalytic conversion of CO 2 at low temperatures: Understanding the synergistic effect of plasma-catalysis. Applied Catalysis B: Environmental, 2016, 182, 525-532.	10.8	215
9	Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. International Journal of Hydrogen Energy, 2014, 39, 10883-10891.	3.8	210
10	Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renewable and Sustainable Energy Reviews, 2018, 94, 1086-1109.	8.2	206
11	The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Applied Catalysis B: Environmental, 2016, 180, 497-510.	10.8	201
12	Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst. Fuel, 2010, 89, 3022-3032.	3.4	198
13	Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. Energy Conversion and Management, 2017, 148, 692-700.	4.4	180
14	Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion. Applied Catalysis B: Environmental, 2019, 244, 63-75.	10.8	180
15	Processing Real-World Waste Plastics by Pyrolysis-Reforming for Hydrogen and High-Value Carbon Nanotubes. Environmental Science & Technology, 2014, 48, 819-826.	4.6	176
16	Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: Influence of Ni content. Applied Catalysis B: Environmental, 2011, 108-109, 6-13.	10.8	168
17	Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Applied Catalysis B: Environmental, 2014, 147, 571-584.	10.8	152
18	Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel, 2013, 106, 697-706.	3.4	150

#	Article	IF	CITATIONS
19	H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chemical Engineering Journal, 2020, 382, 122947.	6.6	145
20	Recent advances in integrated CO ₂ capture and utilization: a review. Sustainable Energy and Fuels, 2021, 5, 4546-4559.	2.5	142
21	Pyrolysis–gasification of post-consumer municipal solid plastic waste for hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 949-957.	3.8	135
22	Characteristics and catalytic properties of Ni/CaAlO x catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust. Applied Catalysis B: Environmental, 2016, 183, 168-175.	10.8	132
23	Conventional and microwave-assisted pyrolysis of biomass under different heating rates. Journal of Analytical and Applied Pyrolysis, 2014, 107, 276-283.	2.6	124
24	Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management, 2015, 36, 136-146.	3.7	119
25	Investigation of coke formation on Ni-Mg-Al catalyst for hydrogen production from the catalytic steam pyrolysis-gasification of polypropylene. Applied Catalysis B: Environmental, 2010, 96, 198-207.	10.8	113
26	Syngas production from pyrolysis–catalytic steam reforming of waste biomass in a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis, 2012, 95, 87-94.	2.6	112
27	Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. Journal of Analytical and Applied Pyrolysis, 2015, 113, 231-238.	2.6	110
28	Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis–gasification of a biomass/plastic mixture. Journal of Analytical and Applied Pyrolysis, 2015, 113, 15-21.	2.6	101
29	Polycyclic Aromatic Hydrocarbon Formation from the Pyrolysis/Gasification of Lignin at Different Reaction Conditions. Energy & Fuels, 2014, 28, 6371-6379.	2.5	100
30	Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene. Fuel Processing Technology, 2015, 130, 46-53.	3.7	98
31	Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts. Fuel, 2019, 257, 116032.	3.4	92
32	Investigation of Ni-Al, Ni-Mg-Al and Ni-Cu-Al catalyst for hydrogen production from pyrolysis–gasification of polypropylene. Applied Catalysis B: Environmental, 2009, 90, 147-156.	10.8	91
33	Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy & Fuels, 2017, 31, 5063-5072.	2.5	84
34	Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic. Chemical Engineering Research and Design, 2016, 103, 107-114.	2.7	83
35	Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts. Fuel, 2017, 188, 610-620.	3.4	83
36	Effect of Ni Particle Location within the Mesoporous MCM-41 Support for Hydrogen Production from the Catalytic Gasification of Biomass. ACS Sustainable Chemistry and Engineering, 2013, 1, 1083-1091.	3.2	82

#	Article	IF	CITATIONS
37	Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni–Al catalysts. International Journal of Hydrogen Energy, 2014, 39, 14642-14652.	3.8	82
38	Hydrogen production from the pyrolysis–gasification of waste tyres with a nickel/cerium catalyst. International Journal of Hydrogen Energy, 2011, 36, 6628-6637.	3.8	79
39	Pyrolysis–Catalytic Reforming/Gasification of Waste Tires for Production of Carbon Nanotubes and Hydrogen. Energy & Fuels, 2015, 29, 3328-3334.	2.5	77
40	Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics. Journal of Analytical and Applied Pyrolysis, 2017, 125, 32-39.	2.6	77
41	Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials. Journal of CO2 Utilization, 2020, 38, 262-272.	3.3	77
42	Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Advances, 2012, 2, 4045.	1.7	75
43	Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel. Applied Catalysis B: Environmental, 2013, 134-135, 238-250.	10.8	75
44	Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts. Fuel, 2018, 224, 241-249.	3.4	72
45	Hydrogen production from catalytic steam reforming of benzene as tar model compound of biomass gasification. Fuel Processing Technology, 2016, 148, 380-387.	3.7	70
46	Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catalysis Today, 2020, 351, 50-57.	2.2	70
47	Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass. Energy, 2021, 226, 120358.	4.5	69
48	Integrated CO2 capture and utilization with CaO-alone for high purity syngas production. Carbon Capture Science & Technology, 2021, 1, 100001.	4.9	69
49	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Engineering Chemistry Research, 2020, 59, 22017-22039.	1.8	67
50	A Novel Nano-Ni/SiO ₂ Catalyst for Hydrogen Production from Steam Reforming of Ethanol. Environmental Science & Technology, 2010, 44, 5993-5998.	4.6	63
51	Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions. Applied Surface Science, 2021, 565, 150526.	3.1	63
52	Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application. Journal of Analytical and Applied Pyrolysis, 2016, 120, 304-313.	2.6	62
53	Ni/CeO2/ZSM-5 catalysts for the production of hydrogen from the pyrolysis–gasification of polypropylene. International Journal of Hydrogen Energy, 2009, 34, 6242-6252.	3.8	61
54	Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA. Chemical Engineering Science, 2019, 195, 767-776.	1.9	60

Chunfei Wu

#	Article	IF	CITATIONS
55	Pyrolysis/reforming of rice husks with a Ni–dolomite catalyst: Influence of process conditions on syngas and hydrogen yield. Journal of the Energy Institute, 2016, 89, 657-667.	2.7	59
56	Methanation of syngas (H 2 /CO) over the different Ni-based catalysts. Fuel, 2017, 189, 419-427.	3.4	58
57	A novel Ni–Mg–Al–CaO catalyst with the dual functions of catalysis and CO2 sorption for H2 production from the pyrolysis–gasification of polypropylene. Fuel, 2010, 89, 1435-1441.	3.4	57
58	Hydrogen production from steam reforming of ethanol with nano-Ni/SiO2 catalysts prepared at different Ni to citric acid ratios using a sol–gel method. Applied Catalysis B: Environmental, 2011, 102, 251-259.	10.8	57
59	Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass. Catalysis Today, 2018, 309, 2-10.	2.2	57
60	Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis. RSC Advances, 2015, 5, 11371-11377.	1.7	56
61	Catalytic Pyrolysis-Gasification of Waste Tire and Tire Elastomers for Hydrogen Production. Energy & Fuels, 2010, 24, 3928-3935.	2.5	55
62	Hydrogen production from cellulose catalytic gasification on CeO2/Fe2O3 catalyst. Energy Conversion and Management, 2018, 171, 241-248.	4.4	55
63	Hydrogen generation from biomass by pyrolysis. Nature Reviews Methods Primers, 2022, 2, .	11.8	55
64	Hydrogen Production from the Pyrolysisâ^'Gasification of Polypropylene: Influence of Steam Flow Rate, Carrier Gas Flow Rate and Gasification Temperature. Energy & Fuels, 2009, 23, 5055-5061.	2.5	54
65	Novel bi-functional Ni–Mg–Al–CaO catalyst for catalytic gasification of biomass for hydrogen production with in situ CO2 adsorption. RSC Advances, 2013, 3, 5583.	1.7	54
66	CO2 gasification of bio-char derived from conventional and microwave pyrolysis. Applied Energy, 2015, 157, 533-539.	5.1	54
67	Progress in carbon-based electrocatalyst derived from biomass for the hydrogen evolution reaction. Fuel, 2021, 293, 120440.	3.4	53
68	Effects of Gasification Temperature and Catalyst Ratio on Hydrogen Production from Catalytic Steam Pyrolysis-Gasification of Polypropylene. Energy & Fuels, 2008, 22, 4125-4132.	2.5	51
69	Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming. Catalysis Communications, 2017, 91, 76-79.	1.6	51
70	Hydrogen production from pyrolysis catalytic reforming of cellulose in the presence of K alkali metal. International Journal of Hydrogen Energy, 2016, 41, 10598-10607.	3.8	50
71	Kinetics, equilibrium and thermodynamics studies on biosorption of Rhodamine B from aqueous solution by earthworm manure derived biochar. International Biodeterioration and Biodegradation, 2017, 120, 104-114.	1.9	50
72	Fundamental studies of carbon capture using CaO-based materials. Journal of Materials Chemistry A, 2019, 7, 9977-9987.	5.2	50

#	Article	IF	CITATIONS
73	Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology, 2016, 144, 299-304.	3.7	49
74	Waste plastics recycling for producing high-value carbon nanotubes: Investigation of the influence of Manganese content in Fe-based catalysts. Journal of Hazardous Materials, 2021, 402, 123726.	6.5	49
75	Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. Fuel, 2021, 286, 119308.	3.4	47
76	Nickel-catalysed pyrolysis/gasification of biomass components. Journal of Analytical and Applied Pyrolysis, 2013, 99, 143-148.	2.6	46
77	Pyrolysis of scrap tyres with zeolite USY. Journal of Hazardous Materials, 2006, 137, 1065-1073.	6.5	44
78	Characterization of Tar from the Pyrolysis/Gasification of Refuse Derived Fuel: Influence of Process Parameters and Catalysis. Energy & Fuels, 2012, 26, 2107-2115.	2.5	44
79	Modelling of down-draft gasification of biomass – An integrated pyrolysis, combustion and reduction process. Applied Thermal Engineering, 2018, 142, 444-456.	3.0	44
80	Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals. Energy Conversion and Management, 2018, 172, 32-38.	4.4	44
81	Novel application of cotton stalk as a waste derived catalyst in the low temperature SCR-deNOx process. Fuel, 2013, 105, 585-594.	3.4	43
82	Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 264-269.	2.6	43
83	Nickel-based catalysts for tar reduction in biomass gasification. Biofuels, 2011, 2, 451-464.	1.4	42
84	Efficient-and-stable CH4 reforming with integrated CO2 capture and utilization using Li4SiO4 sorbent. Separation and Purification Technology, 2021, 277, 119476.	3.9	42
85	Hydrogen production from high temperature steam catalytic gasification of bio-char. Journal of the Energy Institute, 2016, 89, 222-230.	2.7	41
86	Temperature sensitivity of the selective catalytic reduction (SCR) performance of Ce–TiO2 in the presence of SO2. Chemosphere, 2020, 243, 125419.	4.2	39
87	One-pot synthesis of digestate-derived biochar for carbon dioxide capture. Fuel, 2020, 279, 118525.	3.4	39
88	Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts. Fuel, 2015, 158, 999-1005.	3.4	37
89	Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture. Environmental Pollution, 2020, 267, 115487.	3.7	37
90	A thermogravimetric assessment of the tri-combustion process for coal, biomass and polyethylene. Fuel, 2021, 287, 119355.	3.4	37

#	Article	IF	CITATIONS
91	Integrated CO2 capture and methanation on Ru/CeO2-MgO combined materials: Morphology effect from CeO2 support. Fuel, 2022, 317, 123420.	3.4	37
92	Promoting hydrogen-rich syngas production from catalytic reforming of biomass pyrolysis oil on nanosized nickel-ceramic catalysts. Applied Thermal Engineering, 2017, 125, 297-305.	3.0	36
93	Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catalysis Today, 2018, 307, 154-161.	2.2	36
94	Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature. Energy, 2019, 167, 1097-1106.	4.5	36
95	Catalytic conversion of hard plastics to valuable carbon nanotubes. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104748.	2.6	36
96	Study on non-isothermal kinetics and the influence of calcium oxide on hydrogen production during bituminous coal pyrolysis. Journal of Analytical and Applied Pyrolysis, 2020, 150, 104888.	2.6	36
97	Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system. Fuel, 2014, 137, 364-374.	3.4	35
98	Thermodynamic analysis of hybrid adiabatic compressed air energy storage system and biomass gasification storage (A-CAESA+ABMGS) power system. Fuel, 2020, 271, 117572.	3.4	35
99	Study of oily sludge pyrolysis combined with fine particle removal using a ceramic membrane in a fixed-bed reactor. Chemical Engineering and Processing: Process Intensification, 2018, 128, 276-281.	1.8	34
100	Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol. Scientific Reports, 2013, 3, 2742.	1.6	33
101	Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: a review. Sustainable Energy and Fuels, 2021, 5, 4173-4208.	2.5	33
102	Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology, 2022, 2, 100018.	4.9	33
103	Integrated carbon capture and utilization: Synergistic catalysis between highly dispersed Ni clusters and ceria oxygen vacancies. Chemical Engineering Journal, 2022, 437, 135394.	6.6	33
104	Development of Fe-Promoted Ni–Al Catalysts for Hydrogen Production from Gasification of Wood Sawdust. Energy & Fuels, 2017, 31, 2118-2127.	2.5	31
105	Development of Ca/KIT-6 adsorbents for high temperature CO2 capture. Fuel, 2019, 235, 1070-1076.	3.4	31
106	Drivers and reduction solutions of food waste in the Chinese food service business. Sustainable Production and Consumption, 2021, 26, 78-88.	5.7	31
107	Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming. Journal of the Energy Institute, 2017, 90, 276-284.	2.7	30
108	Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst. Chemical Engineering Science, 2018, 192, 882-891.	1.9	30

#	Article	IF	CITATIONS
109	Highly active and stable Ni/perovskite catalysts in steam methane reforming for hydrogen production. Sustainable Energy and Fuels, 2021, 5, 1845-1856.	2.5	30
110	Ni promoted Fe-CaO dual functional materials for calcium chemical dual looping. Chemical Engineering Journal, 2022, 441, 135752.	6.6	30
111	Thermal Characteristics of Biomass Pyrolysis Oil and Potential Hydrogen Production by Catalytic Steam Reforming. Energy & Fuels, 2018, 32, 5234-5243.	2.5	28
112	Co-pyrolysis of lignin and polyethylene with the addition of transition metals - Part I: Thermal behavior and kinetics analysis. Journal of the Energy Institute, 2020, 93, 281-291.	2.7	28
113	Carbon nanotubes and hydrogen production from the reforming of toluene. International Journal of Hydrogen Energy, 2013, 38, 8790-8797.	3.8	27
114	Pyrolysis–catalysis of waste plastic using a nickel–stainless-steel mesh catalyst for high-value carbon products. Environmental Technology (United Kingdom), 2017, 38, 2889-2897.	1.2	27
115	Oneâ€Step Reforming of CO ₂ and CH ₄ into Highâ€Value Liquid Chemicals and Fuels at Room Temperature by Plasmaâ€Driven Catalysis. Angewandte Chemie, 2017, 129, 13867-13871.	1.6	27
116	Ethanol steam reforming on Ni/CaO catalysts for coproduction of hydrogen and carbon nanotubes. International Journal of Energy Research, 2019, 43, 1255-1271.	2.2	27
117	Ni/support-CaO bifunctional combined materials for integrated CO2 capture and reverse water-gas shift reaction: Influence of different supports. Separation and Purification Technology, 2022, 298, 121604.	3.9	27
118	Autothermal CaO looping biomass gasification to increase process energy efficiency and reduce ash sintering. Fuel, 2020, 277, 118199.	3.4	26
119	Sorption enhanced ethanol steam reforming on a bifunctional Ni/CaO catalyst for H2 production. Journal of Environmental Chemical Engineering, 2021, 9, 106725.	3.3	26
120	Thermal Chemical Conversion of High-Density Polyethylene for the Production of Valuable Carbon Nanotubes Using Ni/AAO Membrane Catalyst. Energy & Fuels, 2018, 32, 4511-4520.	2.5	25
121	Influence of Ni/SiO2 catalyst preparation methods on hydrogen production from the pyrolysis/reforming of refuse derived fuel. International Journal of Hydrogen Energy, 2014, 39, 5723-5732.	3.8	24
122	Equilibrium, kinetics and thermodynamics of cadmium ions (Cd2+) removal from aqueous solution using earthworm manure-derived carbon materials. Journal of Molecular Liquids, 2017, 241, 612-621.	2.3	24
123	Techno-economic analysis of wind power integrated with both compressed air energy storage (CAES) and biomass gasification energy storage (BGES) for power generation. RSC Advances, 2018, 8, 22004-22022.	1.7	24
124	Experimental and thermodynamic study on sorption-enhanced steam reforming of toluene for H2 production using the mixture of Ni/perovskite-CaO. Fuel, 2021, 305, 121447.	3.4	23
125	Influence of nickel-based catalysts on syngas production from carbon dioxide reforming of waste high density polyethylene. Fuel Processing Technology, 2015, 138, 156-163.	3.7	22
126	Low cost earthworm manure-derived carbon material for the adsorption of Cu 2+ from aqueous solution: Impact of pyrolysis temperature. Ecological Engineering, 2017, 98, 189-195.	1.6	22

#	Article	IF	CITATIONS
127	Structured ZSM-5/SiC foam catalysts for bio-oils upgrading. Applied Catalysis A: General, 2020, 599, 117626.	2.2	22
128	Boosting the Conversion of CO ₂ with Biochar to Clean CO in an Atmospheric Plasmatron: A Synergy of Plasma Chemistry and Thermochemistry. ACS Sustainable Chemistry and Engineering, 2022, 10, 7712-7725.	3.2	22
129	Ginkgo biloba L. shells-based adsorbent for the removal of Cu2+ and Cd2+ from aqueous solution: Kinetics, isotherm, thermodynamics and mechanisms. Journal of Molecular Liquids, 2017, 241, 603-611.	2.3	21
130	Autothermal CaO Looping Biomass Gasification for Renewable Syngas Production. Environmental Science & Technology, 2019, 53, 9298-9305.	4.6	21
131	Application of Carbon Nanotubes from Waste Plastics As Filler to Epoxy Resin Composite. ACS Sustainable Chemistry and Engineering, 2022, 10, 2204-2213.	3.2	20
132	Optimising the sustainability of crude bio-oil via reforming to hydrogen and valuable by-product carbon nanotubes. RSC Advances, 2013, 3, 19239.	1.7	19
133	Investigation of spherical alumina supported catalyst for carbon nanotubes production from waste polyethylene. Chemical Engineering Research and Design, 2021, 146, 201-207.	2.7	19
134	Potential photo-switching sorbents for CO2 capture – A review. Renewable and Sustainable Energy Reviews, 2022, 158, 112079.	8.2	18
135	Catalytic Steam Gasification of Biomass for a Sustainable Hydrogen Future: Influence of Catalyst Composition. Waste and Biomass Valorization, 2014, 5, 175-180.	1.8	17
136	Utilization of NiO/porous ceramic monolithic catalyst for upgrading biomass fuel gas. Journal of the Energy Institute, 2018, 91, 331-338.	2.7	15
137	The effect of phase change material balls on the thermal characteristics in hot water tanks: CFD research. Applied Thermal Engineering, 2020, 178, 115557.	3.0	14
138	Catalytic Pyrolysis/Gasification of Refuse Derived Fuel for Hydrogen Production and Tar Reduction: Influence of Nickel to Citric Acid Ratio Using Ni/SiO2 Catalysts. Waste and Biomass Valorization, 2014, 5, 625-636.	1.8	13
139	High-value resource recovery products from waste tyres. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2016, 169, 137-145.	0.9	13
140	Production of carbon nanotubes (CNTs) from thermochemical conversion of waste plastics using Ni/anodic aluminum oxide (AAO) template catalyst. Energy Procedia, 2017, 142, 525-530.	1.8	11
141	Sulfation effect of Ce/TiO ₂ catalyst for the selective catalytic reduction of NO _x with NH ₃ : mechanism and kinetic studies. RSC Advances, 2019, 9, 32110-32120.	1.7	11
142	A steric hindrance alleviation strategy to enhance the photo-switching efficiency of azobenzene functionalized metal–organic frameworks toward tailorable carbon dioxide capture. Journal of Materials Chemistry A, 2022, 10, 8303-8308.	5.2	11
143	Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere. Energies, 2015, 8, 12331-12341.	1.6	10
144	Fuels by Waste Plastics Using Activated Carbon, MCM-41, HZSM-5 and Their Mixture. MATEC Web of Conferences, 2016, 49, 05001.	0.1	10

#	Article	IF	CITATIONS
145	CO2 capture using mesocellular siliceous foam (MCF)-supported CaO. Journal of the Energy Institute, 2019, 92, 1591-1598.	2.7	10
146	Preparation of Different Nickel–Iron/Titania–Alumina Catalysts for Hydrogen/Carbon Monoxide Methanation under Atmospheric Pressure. Energy Technology, 2017, 5, 1218-1227.	1.8	9
147	Ethanol Steam Reforming for Hydrogen Production Over Hierarchical Macroporous Mesoporous SBA-15 Supported Nickel Nanoparticles. Topics in Catalysis, 2020, 63, 403-412.	1.3	9
148	Coked Ni/Al ₂ O ₃ from the catalytic reforming of volatiles from co-pyrolysis of lignin and polyethylene: preparation, identification and application as a potential adsorbent. Catalysis Science and Technology, 2021, 11, 4162-4171.	2.1	9
149	Integrated gasification and non-thermal plasma-catalysis system for cleaner syngas production from cellulose. IOP SciNotes, 2020, 1, 024001.	0.4	9
150	Removal of antimonite (Sb(III)) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms. Chemosphere, 2022, 288, 132581.	4.2	9
151	Carbon nanotubes/Al ₂ O ₃ composite derived from catalytic reforming of the pyrolysis volatiles of the mixture of polyethylene and lignin for highly-efficient removal of Pb(<scp>ii</scp>). RSC Advances, 2021, 11, 37851-37865.	1.7	9
152	Feasibilities of producing high-value carbon nanotubes from waste plastics by spray pyrolysis. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105613.	2.6	8
153	High temperature pyrolysis of solid products obtained from rapid hydrothermal pre-processing of pinewood sawdust. RSC Advances, 2014, 4, 34784-34792.	1.7	7
154	Hydrogen from waste plastics by way of pyrolysis–gasification. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2014, 167, 35-46.	0.9	7
155	Effect of Transition Metal Additives on the Catalytic Performance of Cu–Mn/SAPO-34 for Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysts, 2019, 9, 685.	1.6	7
156	Amine or Azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture. Materials Today Communications, 2021, 27, 102338.	0.9	7
157	Effective catalytic steam reforming of naphthalene over Ni-modified ZSM-5 via one-pot hydrothermal synthesis. Waste Management, 2022, 147, 1-9.	3.7	7
158	Evaluation of carbon nanotubes produced from toluene steam reforming as catalyst support for selective catalytic reduction of NOx. Journal of the Energy Institute, 2014, 87, 367-371.	2.7	6
159	Low Temperature Selective Catalytic Reduction Using Molding Catalysts Mn-Ce/FA and Mn-Ce/FA-30%TiO2. Energies, 2017, 10, 2084.	1.6	6
160	Hydrogen production from autothermal CO2 gasification of cellulose in a fixed-bed reactor: Influence of thermal compensation from CaO carbonation. International Journal of Hydrogen Energy, 2022, 47, 41480-41487.	3.8	6
161	Effect of steam addition for energy saving during CaCO3 calcination of auto thermal biomass gasification. Biomass and Bioenergy, 2022, 161, 106416.	2.9	6
162	Photoswitching metal organic frameworks development and applications on environmental related topics. Materials Today Sustainability, 2022, 18, 100149.	1.9	5

#	Article	IF	CITATIONS
163	Waste-derived activated carbons for control of nitrogen oxides. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2016, 169, 30-41.	0.9	4
164	Catalytic oxidation of NO over MnO _x –CoO _x /TiO ₂ in the presence of a low ratio of O ₃ /NO: activity and mechanism. RSC Advances, 2020, 10, 24493-24506.	1.7	4
165	XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process. Separation and Purification Technology, 2022, 298, 121622.	3.9	4
166	Quick sequential procedure for speciation analysis of heavy metals in soils by supersonic extraction. Chemical Speciation and Bioavailability, 2005, 17, 137-146.	2.0	3
167	Effect of auto thermal biomass gasification on the sintering of simulated ashes. Applications in Energy and Combustion Science, 2022, 9, 100054.	0.9	3
168	Facile and green preparation of solid carbon nanoonions <i>via</i> catalytic co-pyrolysis of lignin and polyethylene and their adsorption capability towards Cu(<scp>ii</scp>). RSC Advances, 2022, 12, 5042-5052.	1.7	3
169	Biomass and Wastes for Bioenergy: Thermochemical Conversion and Biotechnologies. BioMed Research International, 2018, 2018, 1-2.	0.9	2
170	Distinguishing the impact of temperature on iron catalyst during the catalytic-pyrolysis of waste polypropylene. Proceedings of the Combustion Institute, 2023, 39, 835-845.	2.4	1
171	Experimental investigation on vapor liquid equilibrium and azeotropic behavior for the 1,1,1,2-tetrafluoroethane (R134a)Â+Âpropane (R290) system at temperatures from 253.15 to 303.15 K. International Journal of Refrigeration, 2020, 120, 209-220.	1.8	0