Jaupart Claude

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1418495/jaupart-claude-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164 58 11,470 103 h-index g-index citations papers 6.26 178 12,359 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
164	Seismic tremor reveals active trans-crustal magmatic system beneath Kamchatka volcanoes <i>Science Advances</i> , 2022 , 8, eabj1571	14.3	2
163	Interactive simulation of plume and pyroclastic volcanic ejections. <i>Proceedings of the ACM on Computer Graphics and Interactive Techniques</i> , 2022 , 5, 1-15	2.3	
162	Episodicity and Migration of Low Frequency Earthquakes Modeled With Fast Fluid Pressure Transients in the Permeable Subduction Interface. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2021JB021894	3.6	1
161	Heat flow constraints on the mafic character of Archean continental crust. <i>Earth and Planetary Science Letters</i> , 2021 , 571, 117091	5.3	3
160	Lithosphere, Continental: Thermal Structure. Encyclopedia of Earth Sciences Series, 2020, 1-13	О	
159	Convection in an internally heated stratified heterogeneous reservoir. <i>Journal of Fluid Mechanics</i> , 2019 , 870, 67-105	3.7	8
158	Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean. <i>Nature</i> , 2019 , 575, 485-488	50.4	10
157	The Formation of Continental Crust from a Physics Perspective. <i>Geochemistry International</i> , 2018 , 56, 1289-1321	0.8	
156	Low-Frequency Earthquakes and Pore Pressure Transients in Subduction Zones. <i>Geophysical Research Letters</i> , 2018 , 45, 11,083	4.9	15
155	Fundamentals of laminar free convection in internally heated fluids at values of the Rayleigh R oberts number up to. <i>Journal of Fluid Mechanics</i> , 2018 , 846, 966-998	3.7	10
154	Postemplacement dynamics of basaltic intrusions in the continental crust. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 966-987	3.6	10
153	Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. <i>Scientific Reports</i> , 2017 , 7, 46094	4.9	31
152	The Sudbury Huronian heat flow anomaly, Ontario, Canada. <i>Precambrian Research</i> , 2017 , 295, 187-202	3.9	2
151	The Earth mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources. <i>Experiments in Fluids</i> , 2017 , 58, 1	2.5	4
150	The fate of mafic and ultramafic intrusions in the continental crust. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 131-140	5.3	10
149	Radiogenic heat production in the continental crust. <i>Lithos</i> , 2016 , 262, 398-427	2.9	66
148	The feeder system of the Toba supervolcano from the slab to the shallow reservoir. <i>Nature Communications</i> , 2016 , 7, 12228	17.4	32

147	Temperatures, Heat, and Energy in the Mantle of the Earth 2015 , 223-270		43
146	Post-orogenic thermal evolution of newborn Archean continents. <i>Earth and Planetary Science Letters</i> , 2015 , 432, 36-45	5.3	13
145	Microwave-heating laboratory experiments for planetary mantle convection. <i>Journal of Fluid Mechanics</i> , 2015 , 777, 50-67	3.7	15
144	Microwave-based, internally-heated convection: New perspectives for the heterogeneous case 2015 ,		1
143	Heat Flow and Thermal Structure of the Lithosphere 2015 , 217-253		14
142	The impact of a volcanic edifice on intrusive and eruptive activity. <i>Earth and Planetary Science Letters</i> , 2014 , 408, 1-8	5.3	50
141	The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective. <i>Journal of Geophysical Research: Solid Earth</i> , 2014 , 119, 9130-9155	3.6	27
140	Constraints on Crustal Heat Production from Heat Flow Data 2014 , 53-73		15
139	Generation of continental rifts, basins, and swells by lithosphere instabilities. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 3080-3100	3.6	31
138	Radiogenic heat production, thermal regime and evolution of continental crust. <i>Tectonophysics</i> , 2013 , 609, 524-534	3.1	87
137	Microwave-based laboratory experiments for internally-heated mantle convection 2013,		9
136	The instability of continental passive margins and its effect on continental topography and heat flow. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 1817-1836	3.6	12
135	Geoneutrinos and the energy budget of the Earth. Journal of Geodynamics, 2012, 54, 43-54	2.2	27
134	A lithospheric instability origin for the Cameroon Volcanic Line. <i>Earth and Planetary Science Letters</i> , 2012 , 335-336, 80-87	5.3	52
133	The initiation of subduction by crustal extension at a continental margin. <i>Geophysical Journal International</i> , 2012 , 188, 779-797	2.6	12
132	The next-generation liquid-scintillator neutrino observatory LENA. Astroparticle Physics, 2012, 35, 685-	73•2 ₄	163
131	Temperature and rheological properties of the mantle beneath the North American craton from an analysis of heat flux and seismic data. <i>Journal of Geophysical Research</i> , 2011 , 116,		20
130	Rise of volcanic plumes to the stratosphere aided by penetrative convection above large lava flows. <i>Earth and Planetary Science Letters</i> , 2011 , 301, 171-178	5.3	28

129	Magma expansion and fragmentation in a propagating dyke. <i>Earth and Planetary Science Letters</i> , 2011 , 301, 146-152	5.3	21
128	Folding in regions of extension. <i>Geophysical Journal International</i> , 2011 , 185, 1120-1134	2.6	10
127	Two models for the formation of magma reservoirs by small increments. <i>Tectonophysics</i> , 2011 , 500, 34	l-4 9 .1	25
126	Conditions for the arrest of a vertical propagating dyke. <i>Bulletin of Volcanology</i> , 2011 , 73, 191-204	2.4	63
125	Low heat flux and large variations of lithospheric thickness in the Canadian Shield. <i>Journal of Geophysical Research</i> , 2010 , 115,		35
124	The chemical composition of the Earth: Enstatite chondrite models. <i>Earth and Planetary Science Letters</i> , 2010 , 293, 259-268	5.3	302
123	Thermal regime of the lithosphere in the Canadian ShieldThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe parameters, processes, and the evolution of a continent <i>Canadian Journal of Earth Sciences</i> , 2010 , 47, 389-408	1.5	17
122	On the relationship between cycles of eruptive activity and growth of a volcanic edifice. <i>Journal of Volcanology and Geothermal Research</i> , 2010 , 194, 150-164	2.8	30
121	Thermal evolution of cratonic roots. <i>Lithos</i> , 2009 , 109, 47-60	2.9	72
120	Dynamics of magma flow near the vent: Implications for dome eruptions. <i>Earth and Planetary Science Letters</i> , 2009 , 279, 185-196	5.3	22
119	Enhanced crustal geo-neutrino production near the Sudbury Neutrino Observatory, Ontario, Canada. <i>Earth and Planetary Science Letters</i> , 2009 , 288, 301-308	5.3	21
118	Dike propagation through layered rocks. Journal of Geophysical Research, 2009, 114,		62
117	Magma degassing and intermittent lava dome growth. Geophysical Research Letters, 2008, 35,	4.9	34
116	Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle. <i>Journal of Geophysical Research</i> , 2007 , 112,		42
115	Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid. Journal of Fluid Mechanics, 2007 , 572, 433-469	3.7	31
114	Heat Flow and Thermal Structure of the Lithosphere 2007 , 217-251		21
113	Heat Flow and Thermal Structure of the Lithosphere 2007 , 217-251		58
112	Temperatures, Heat and Energy in the Mantle of the Earth 2007 , 253-303		68

(2004-2007)

111	Secular cooling and thermal structure of continental lithosphere. <i>Earth and Planetary Science Letters</i> , 2007 , 257, 83-96	5.3	33
110	Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. <i>Earth and Planetary Science Letters</i> , 2007 , 260, 465-481	5.3	144
109	Temperatures, Heat and Energy in the Mantle of the Earth 2007 , 253-303		63
108	Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data. <i>Journal of Geophysical Research</i> , 2006 , 111,		54
107	Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow. <i>Journal of Geophysical Research</i> , 2006 , 111,		24
106	Archean Thermal Regime and Stabilization of the Cratons. <i>Geophysical Monograph Series</i> , 2006 , 61-73	1.1	14
105	Variations of strength and localized deformation in cratons: The 1.9 Ga Kapuskasing uplift, Superior Province, Canada. <i>Earth and Planetary Science Letters</i> , 2006 , 249, 216-228	5.3	18
104	Ultra-rapid formation of large volumes of evolved magma. <i>Earth and Planetary Science Letters</i> , 2006 , 250, 38-52	5.3	40
103	Heat flow, thermal regime, and elastic thickness of the lithosphere in the Trans-Hudson Orogen. <i>Canadian Journal of Earth Sciences</i> , 2005 , 42, 517-532	1.5	25
102	Caldera formation by magma withdrawal from a reservoir beneath a volcanic edifice. <i>Earth and Planetary Science Letters</i> , 2005 , 230, 273-287	5.3	32
101	Penetration of mantle plumes through depleted lithosphere. <i>Journal of Geophysical Research</i> , 2005 , 110,		22
100	Some consequences of volcanic edifice destruction for eruption conditions. <i>Journal of Volcanology and Geothermal Research</i> , 2005 , 145, 68-80	2.8	51
99	Lithospheric structure of the Canadian Shield inferred from inversion of surface-wave dispersion with thermodynamic a priori constraints. <i>Geological Society Special Publication</i> , 2004 , 239, 175-194	1.7	18
98	Likelihood of basaltic eruptions as a function of volatile content and volcanic edifice size. <i>Journal of Volcanology and Geothermal Research</i> , 2004 , 137, 201-217	2.8	22
97	Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. <i>Earth and Planetary Science Letters</i> , 2004 , 223, 65-65	5.3	
96	Heat flow and deep lithospheric thermal structure at Lac de Gras, Slave Province, Canada. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	30
95	Heat flow in the Nipigon arm of the Keweenawan rift, northwestern Ontario, Canada. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	14
94	Marginal stability of thick continental lithosphere. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	12

93	Nonequilibrium temperatures and cooling rates in thick continental lithosphere. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	20
92	Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. <i>Earth and Planetary Science Letters</i> , 2004 , 223, 65-77	5.3	139
91	Magma storage and horizontal dyke injection beneath a volcanic edifice. <i>Earth and Planetary Science Letters</i> , 2004 , 221, 245-262	5.3	132
90	Laminar starting plumes in high-Prandtl-number fluids. <i>Journal of Fluid Mechanics</i> , 2003 , 478, 287-298	3.7	63
89	Magma chamber behavior beneath a volcanic edifice. Journal of Geophysical Research, 2003, 108,		87
88	Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. <i>Journal of Geophysical Research</i> , 2003 , 108,		87
87	Heat flow in the western Superior Province of the Canadian shield. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	18
86	Temperatures at the base of the Laurentide Ice Sheet inferred from borehole temperature data. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	22
85	Constraints on Crustal Heat Production from Heat Flow Data 2003, 65-84		43
84	The distributions of slip rate and ductile deformation in a strike-slip shear zone. <i>Geophysical Journal International</i> , 2002 , 148, 179-192	2.6	11
83	Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield. <i>Journal of Geophysical Research</i> , 2002 , 107, ETG 7-1-ETG 7-19		44
82	Simultaneous inversion of gravity and heat flow data: constraints on thermal regime, rheology and evolution of the Canadian Shield crust?. <i>Journal of Geodynamics</i> , 2002 , 34, 11-30	2.2	12
81	Marginal stability of atmospheric eruption columns and pyroclastic flow generation. <i>Journal of Geophysical Research</i> , 2001 , 106, 21785-21798		30
80	Ascent and decompression of viscous vesicular magma in a volcanic conduit. <i>Journal of Geophysical Research</i> , 2001 , 106, 16223-16240		30
79	What the Mantle Sees: The Effects of Continents on Mantle Heat Flow. <i>Geophysical Monograph Series</i> , 2000 , 95-112	1.1	6
78	Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield. <i>Canadian Journal of Earth Sciences</i> , 2000 , 37, 399-414	1.5	82
77	Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. <i>Earth and Planetary Science Letters</i> , 2000 , 178, 139-149	5.3	56
76	The effect of edifice load on magma ascent beneath a volcano. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2000 , 358, 1515-1532	3	133

(1996-2000)

75	Low mantle heat flow at the edge of the North American Continent, Voisey Bay, Labrador. <i>Geophysical Research Letters</i> , 2000 , 27, 823-826	4.9	39
74	The thermal structure and thickness of continental roots. <i>Lithos</i> , 1999 , 48, 93-114	2.9	263
73	The generation of gas overpressure in volcanic eruptions. <i>Earth and Planetary Science Letters</i> , 1999 , 166, 57-70	5.3	65
7 ²	On causal links between flood basalts and continental breakup. <i>Earth and Planetary Science Letters</i> , 1999 , 166, 177-195	5.3	564
71	Heat flow in the Trans-Hudson Orogen of the Canadian Shield: Implications for Proterozoic continental growth. <i>Journal of Geophysical Research</i> , 1999 , 104, 29007-29024		38
70	The thermal structure and thickness of continental roots. <i>Developments in Geotectonics</i> , 1999 , 93-114		9
69	Constraints on cooling rates and permeabilities of pumice in an explosive eruption jet from colour and magnetic mineralogy. <i>Journal of Volcanology and Geothermal Research</i> , 1998 , 86, 79-91	2.8	46
68	Large-scale crustal heterogeneities and lithospheric strength in cratons. <i>Earth and Planetary Science Letters</i> , 1998 , 164, 205-219	5.3	57
67	Dike propagation through an elastic plate. <i>Journal of Geophysical Research</i> , 1998 , 103, 18295-18314		28
66	Heat flow and thickness of the lithosphere in the Canadian Shield. <i>Journal of Geophysical Research</i> , 1998 , 103, 15269-15286		150
65	The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. <i>Journal of Geophysical Research</i> , 1998 , 103, 29759-29779		122
64	Gas loss from magmas through conduit walls during eruption. <i>Geological Society Special Publication</i> , 1998 , 145, 73-90	1.7	58
63	Expansion and quenching of vesicular magma fragments in Plinian eruptions. <i>Journal of Geophysical Research</i> , 1997 , 102, 12187-12203		49
62	Lava flow shapes and dimensions as reflections of magma system conditions. <i>Journal of Volcanology and Geothermal Research</i> , 1997 , 78, 31-50	2.8	24
61	Physical models of volcanic eruptions. <i>Chemical Geology</i> , 1996 , 128, 217-227	4.2	52
60	High heat flow in the trans-Hudson Orogen, Central Canadian Shield. <i>Geophysical Research Letters</i> , 1996 , 23, 3027-3030	4.9	28
59	The production of chemically stratified and adcumulate plutonic igneous rocks. <i>Mineralogical Magazine</i> , 1996 , 60, 99-114	1.7	55
58	Degassing during magma ascent in the Mule Creek vent (USA). Bulletin of Volcanology, 1996 , 58, 117-13	302.4	141

57	Fragmentation of magma during Plinian volcanic eruptions. <i>Bulletin of Volcanology</i> , 1996 , 58, 144-162	2.4	170
56	Simple fluid dynamic models of volcanic rift zones. <i>Earth and Planetary Science Letters</i> , 1995 , 136, 223-2	2 49 13	25
55	Heat flow variations in the Grenville Province, Canada. <i>Earth and Planetary Science Letters</i> , 1995 , 136, 447-460	5.3	39
54	Dynamics of differentiation in magma reservoirs. <i>Journal of Geophysical Research</i> , 1995 , 100, 17615-176	536	95
53	On the effect of continents on mantle convection. <i>Journal of Geophysical Research</i> , 1995 , 100, 24217-24	4238	107
52	Chapter 11a. PHYSICAL ASPECTS OF MAGMA DEGASSING I. Experimental and theoretical constraints on vesiculation 1994 , 413-446		39
51	Influence of cooling on lava-flow dynamics: Comment and Reply. <i>Geology</i> , 1994 , 22, 93	5	7
50	Reply [to Comment on Compositional convection in a reactive crystalline mush and melt differentiation by Stephen Tait and Claude Jaupart Journal of Geophysical Research, 1994, 99, 11919-1	1921	
49	On the vesicularity of pumice. <i>Journal of Geophysical Research</i> , 1994 , 99, 15633		107
48	Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. <i>Journal of Geophysical Research</i> , 1994 , 99, 19853-19866		186
47	Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada: Implications for mantle heat flow. <i>Earth and Planetary Science Letters</i> , 1994 , 122, 103-123	5.3	65
46	On the variations of flow rate in non-explosive lava eruptions. <i>Earth and Planetary Science Letters</i> , 1993 , 114, 505-516	5.3	81
45	Thermal convection in lava lakes. <i>Geophysical Research Letters</i> , 1993 , 20, 1827-1830	4.9	52
44	Transient high-Rayleigh-number thermal convection with large viscosity variations. <i>Journal of Fluid Mechanics</i> , 1993 , 253, 141	3.7	307
43	Influence of cooling on lava-flow dynamics. <i>Geology</i> , 1993 , 21, 335	5	51
42	Compositional convection in a reactive crystalline mush and melt differentiation. <i>Journal of Geophysical Research</i> , 1992 , 97, 6735		183
41	Steady-state operation of Stromboli volcano, Italy: constraints on the feeding system. <i>Bulletin of Volcanology</i> , 1992 , 54, 535-541	2.4	60
40	The planform of compositional convection and chimney formation in a mushy layer. <i>Nature</i> , 1992 , 359, 406-408	50.4	78

39	New Experiments on Compositional Convection 1992 , 155-158		1
38	Convection and Macrosegregation in Magma Chambers 1992 , 241-260		2
37	The Eruption and Spreading of Lava. <i>The IMA Volumes in Mathematics and Its Applications</i> , 1992 , 175-20	3 0.5	3
36	Effects of compressibility on the flow of lava. <i>Bulletin of Volcanology</i> , 1991 , 54, 1-9	2.4	12
35	Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. <i>Earth and Planetary Science Letters</i> , 1991 , 102, 413-429	5.3	367
34	Heat flow and structure of the lithosphere in the Eastern Canadian Shield. <i>Journal of Geophysical Research</i> , 1991 , 96, 19941-19963		137
33	CHAPTER 8. DYNAMICS OF ERUPTIVE PHENOMENA 1990 , 213-238		12
32	CHAPTER 5. PHYSICAL PROCESSES IN THE EVOLUTION OF MAGMAS 1990 , 125-152		4
31	Dynamics of degassing at Kilauea Volcano, Hawaii. <i>Journal of Geophysical Research</i> , 1990 , 95, 2793		141
30	Compositional convection in viscous melts. <i>Nature</i> , 1989 , 338, 571-574	50.4	80
30	Compositional convection in viscous melts. <i>Nature</i> , 1989 , 338, 571-574 The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380	50.4 3·7	80
	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of</i>		
29	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380 Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. <i>Earth and</i>	3.7	244
29	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380 Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. <i>Earth and Planetary Science Letters</i> , 1989 , 92, 107-123 New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec	3·7 5·3	244 383
29 28 27	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380 Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. <i>Earth and Planetary Science Letters</i> , 1989 , 92, 107-123 New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians. <i>Canadian Journal of Earth Sciences</i> , 1989 , 26, 845-852	3·7 5·3 1.5	244 383 45
29 28 27 26	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380 Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. <i>Earth and Planetary Science Letters</i> , 1989 , 92, 107-123 New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians. <i>Canadian Journal of Earth Sciences</i> , 1989 , 26, 845-852 Laboratory models of Hawaiian and Strombolian eruptions. <i>Nature</i> , 1988 , 331, 58-60 Thermal control on post-orogenic extension in collision belts. <i>Earth and Planetary Science Letters</i> ,	3·7 5·3 1.5	24438345265
29 28 27 26 25	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380 Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. <i>Earth and Planetary Science Letters</i> , 1989 , 92, 107-123 New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians. <i>Canadian Journal of Earth Sciences</i> , 1989 , 26, 845-852 Laboratory models of Hawaiian and Strombolian eruptions. <i>Nature</i> , 1988 , 331, 58-60 Thermal control on post-orogenic extension in collision belts. <i>Earth and Planetary Science Letters</i> , 1988 , 89, 48-62 The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and	3.7 5.3 1.5 50.4 5.3	2443834526594

21	Towards Scaling Laws for the Interpretation of Igneous Structures 1987 , 327-347		2
20	Characteristic Dimensions and Times for Dynamic Crystallization 1987 , 613-639		7
19	The stagnant bottom layer of convecting magma chambers. <i>Earth and Planetary Science Letters</i> , 1986 , 80, 183-199	5.3	77
18	On the interaction between convection and crystallization in cooling magma chambers. <i>Earth and Planetary Science Letters</i> , 1986 , 77, 345-361	5.3	152
17	Separated two-phase flow and basaltic eruptions. <i>Journal of Geophysical Research</i> , 1986 , 91, 12842-128	60	192
16	On the thermal structure of the southern Tibetan crust. <i>Geophysical Journal International</i> , 1985 , 81, 131	I-1 <i>1</i> 55	40
15	Continental tectonics and continental kinetics. Earth and Planetary Science Letters, 1985, 74, 171-186	5.3	29
14	Heat focussing, granite genesis and inverted metamorphic gradients in continental collision zones. <i>Earth and Planetary Science Letters</i> , 1985 , 73, 385-397	5.3	100
13	Convective instabilities in a variable viscosity fluid cooled from above. <i>Physics of the Earth and Planetary Interiors</i> , 1985 , 39, 14-32	2.3	63
12	High heat flow in southern Tibet. <i>Nature</i> , 1984 , 307, 32-36	50.4	138
12	High heat flow in southern Tibet. <i>Nature</i> , 1984 , 307, 32-36 Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538	50.4	
11	Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538 Nucleation, crystal growth and the thermal regime of cooling magmas. <i>Journal of Geophysical</i>		41
11	Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538 Nucleation, crystal growth and the thermal regime of cooling magmas. <i>Journal of Geophysical Research</i> , 1984 , 89, 10161-10177 The effects of alteration and the interpretation of heat flow and radioactivity datal reply to	50.4	41 99
11 10 9	Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538 Nucleation, crystal growth and the thermal regime of cooling magmas. <i>Journal of Geophysical Research</i> , 1984 , 89, 10161-10177 The effects of alteration and the interpretation of heat flow and radioactivity datal reply to R.U.M. Rao. <i>Earth and Planetary Science Letters</i> , 1983 , 62, 430-438 Horizontal heat transfer due to radioactivity contrasts: causes and consequences of the linear heat	50.4	41 99 5
11 10 9	Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538 Nucleation, crystal growth and the thermal regime of cooling magmas. <i>Journal of Geophysical Research</i> , 1984 , 89, 10161-10177 The effects of alteration and the interpretation of heat flow and radioactivity datal reply to R.U.M. Rao. <i>Earth and Planetary Science Letters</i> , 1983 , 62, 430-438 Horizontal heat transfer due to radioactivity contrasts: causes and consequences of the linear heat flow relation. <i>Geophysical Journal International</i> , 1983 , 75, 411-435 A detailed study of the distribution of heat flow and radioactivity in New Hampshire (U.S.A.). <i>Earth</i>	5.3	4199565
111 100 9 8 7	Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538 Nucleation, crystal growth and the thermal regime of cooling magmas. <i>Journal of Geophysical Research</i> , 1984 , 89, 10161-10177 The effects of alteration and the interpretation of heat flow and radioactivity datal reply to R.U.M. Rao. <i>Earth and Planetary Science Letters</i> , 1983 , 62, 430-438 Horizontal heat transfer due to radioactivity contrasts: causes and consequences of the linear heat flow relation. <i>Geophysical Journal International</i> , 1983 , 75, 411-435 A detailed study of the distribution of heat flow and radioactivity in New Hampshire (U.S.A.). <i>Earth and Planetary Science Letters</i> , 1982 , 59, 267-287	50.4 5.3 2.6	419956549

LIST OF PUBLICATIONS

3	Oscillatory zoning: a pathological case of crystal growth. <i>Nature</i> , 1981 , 294, 223-228	50.4	198
2	The heat flow through oceanic and continental crust and the heat loss of the Earth. <i>Reviews of Geophysics</i> , 1980 , 18, 269	23.1	918
1	Measuring Heat Flux and Structure Functions of Temperature Fluctuations with an Acoustic Doppler Sodar. <i>Journal of Applied Meteorology</i> , 1980 , 19, 199-205		72