Jaupart Claude

List of Publications by Citations

Source: https://exaly.com/author-pdf/1418495/jaupart-claude-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164 58 103 11,470 h-index g-index citations papers 6.26 178 12,359 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
164	The heat flow through oceanic and continental crust and the heat loss of the Earth. <i>Reviews of Geophysics</i> , 1980 , 18, 269	23.1	918
163	On causal links between flood basalts and continental breakup. <i>Earth and Planetary Science Letters</i> , 1999 , 166, 177-195	5.3	564
162	Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. <i>Earth and Planetary Science Letters</i> , 1989 , 92, 107-123	5.3	383
161	Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. <i>Earth and Planetary Science Letters</i> , 1991 , 102, 413-429	5.3	367
160	Transient high-Rayleigh-number thermal convection with large viscosity variations. <i>Journal of Fluid Mechanics</i> , 1993 , 253, 141	3.7	307
159	The chemical composition of the Earth: Enstatite chondrite models. <i>Earth and Planetary Science Letters</i> , 2010 , 293, 259-268	5.3	302
158	Laboratory models of Hawaiian and Strombolian eruptions. <i>Nature</i> , 1988 , 331, 58-60	50.4	265
157	Oceans and continents: Similarities and differences in the mechanisms of heat loss. <i>Journal of Geophysical Research</i> , 1981 , 86, 11535		264
156	The thermal structure and thickness of continental roots. <i>Lithos</i> , 1999 , 48, 93-114	2.9	263
155	The generation and collapse of a foam layer at the roof of a basaltic magma chamber. <i>Journal of Fluid Mechanics</i> , 1989 , 203, 347-380	3.7	244
154	Oscillatory zoning: a pathological case of crystal growth. <i>Nature</i> , 1981 , 294, 223-228	50.4	198
153	Separated two-phase flow and basaltic eruptions. <i>Journal of Geophysical Research</i> , 1986 , 91, 12842-128	360	192
152	Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. <i>Journal of Geophysical Research</i> , 1994 , 99, 19853-19866		186
151	Compositional convection in a reactive crystalline mush and melt differentiation. <i>Journal of Geophysical Research</i> , 1992 , 97, 6735		183
150	Fragmentation of magma during Plinian volcanic eruptions. <i>Bulletin of Volcanology</i> , 1996 , 58, 144-162	2.4	170
149	The next-generation liquid-scintillator neutrino observatory LENA. Astroparticle Physics, 2012, 35, 685-	7 3 :2 ₄	163
148	On the interaction between convection and crystallization in cooling magma chambers. <i>Earth and Planetary Science Letters</i> , 1986 , 77, 345-361	5.3	152

(2013-1998)

147	Heat flow and thickness of the lithosphere in the Canadian Shield. <i>Journal of Geophysical Research</i> , 1998 , 103, 15269-15286		150	
146	Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. <i>Earth and Planetary Science Letters</i> , 2007 , 260, 465-481	5.3	144	
145	Degassing during magma ascent in the Mule Creek vent (USA). Bulletin of Volcanology, 1996 , 58, 117-13	302.4	141	
144	Dynamics of degassing at Kilauea Volcano, Hawaii. <i>Journal of Geophysical Research</i> , 1990 , 95, 2793		141	
143	Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. <i>Earth and Planetary Science Letters</i> , 2004 , 223, 65-77	5.3	139	
142	High heat flow in southern Tibet. <i>Nature</i> , 1984 , 307, 32-36	50.4	138	
141	Heat flow and structure of the lithosphere in the Eastern Canadian Shield. <i>Journal of Geophysical Research</i> , 1991 , 96, 19941-19963		137	
140	The effect of edifice load on magma ascent beneath a volcano. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2000 , 358, 1515-1532	3	133	
139	Magma storage and horizontal dyke injection beneath a volcanic edifice. <i>Earth and Planetary Science Letters</i> , 2004 , 221, 245-262	5.3	132	
138	The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. <i>Journal of Geophysical Research</i> , 1998 , 103, 29759-29779		122	
137	On the effect of continents on mantle convection. <i>Journal of Geophysical Research</i> , 1995 , 100, 24217-24	4238	107	
136	On the vesicularity of pumice. <i>Journal of Geophysical Research</i> , 1994 , 99, 15633		107	
135	Heat focussing, granite genesis and inverted metamorphic gradients in continental collision zones. <i>Earth and Planetary Science Letters</i> , 1985 , 73, 385-397	5.3	100	
134	Nucleation, crystal growth and the thermal regime of cooling magmas. <i>Journal of Geophysical Research</i> , 1984 , 89, 10161-10177		99	
133	The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: Geothermal implications. <i>Geophysical Research Letters</i> , 1987 , 14, 260-263	4.9	97	
132	Dynamics of differentiation in magma reservoirs. <i>Journal of Geophysical Research</i> , 1995 , 100, 17615-170	636	95	
131	Thermal control on post-orogenic extension in collision belts. <i>Earth and Planetary Science Letters</i> , 1988 , 89, 48-62	5.3	94	
130	Radiogenic heat production, thermal regime and evolution of continental crust. <i>Tectonophysics</i> , 2013 , 609, 524-534	3.1	87	

129	Magma chamber behavior beneath a volcanic edifice. Journal of Geophysical Research, 2003, 108,		87
128	Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. <i>Journal of Geophysical Research</i> , 2003 , 108,		87
127	Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield. <i>Canadian Journal of Earth Sciences</i> , 2000 , 37, 399-414	1.5	82
126	On the variations of flow rate in non-explosive lava eruptions. <i>Earth and Planetary Science Letters</i> , 1993 , 114, 505-516	5.3	81
125	Compositional convection in viscous melts. <i>Nature</i> , 1989 , 338, 571-574	50.4	80
124	The planform of compositional convection and chimney formation in a mushy layer. <i>Nature</i> , 1992 , 359, 406-408	50.4	78
123	The kinetics of nucleation and crystal growth and scaling laws for magmatic crystallization. <i>Contributions To Mineralogy and Petrology</i> , 1987 , 96, 24-34	3.5	77
122	The stagnant bottom layer of convecting magma chambers. <i>Earth and Planetary Science Letters</i> , 1986 , 80, 183-199	5.3	77
121	Heat flow studies: Constraints on the distribution of uranium, thorium and potassium in the continental crust. <i>Earth and Planetary Science Letters</i> , 1981 , 52, 328-344	5.3	77
120	Thermal evolution of cratonic roots. <i>Lithos</i> , 2009 , 109, 47-60	2.9	72
119	Measuring Heat Flux and Structure Functions of Temperature Fluctuations with an Acoustic Doppler Sodar. <i>Journal of Applied Meteorology</i> , 1980 , 19, 199-205		72
118	Temperatures, Heat and Energy in the Mantle of the Earth 2007 , 253-303		68
117	Radiogenic heat production in the continental crust. <i>Lithos</i> , 2016 , 262, 398-427	2.9	66
116	The generation of gas overpressure in volcanic eruptions. <i>Earth and Planetary Science Letters</i> , 1999 , 166, 57-70	5.3	65
115	Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada: Implications for mantle heat flow. <i>Earth and Planetary Science Letters</i> , 1994 , 122, 103-123	5.3	65
114	Horizontal heat transfer due to radioactivity contrasts: causes and consequences of the linear heat flow relation. <i>Geophysical Journal International</i> , 1983 , 75, 411-435	2.6	65
113	Conditions for the arrest of a vertical propagating dyke. Bulletin of Volcanology, 2011, 73, 191-204	2.4	63
112	Temperatures, Heat and Energy in the Mantle of the Earth 2007 , 253-303		63

111	Laminar starting plumes in high-Prandtl-number fluids. <i>Journal of Fluid Mechanics</i> , 2003 , 478, 287-298	3.7	63
110	Convective instabilities in a variable viscosity fluid cooled from above. <i>Physics of the Earth and Planetary Interiors</i> , 1985 , 39, 14-32	2.3	63
109	Dike propagation through layered rocks. Journal of Geophysical Research, 2009, 114,		62
108	Steady-state operation of Stromboli volcano, Italy: constraints on the feeding system. <i>Bulletin of Volcanology</i> , 1992 , 54, 535-541	2.4	60
107	Heat Flow and Thermal Structure of the Lithosphere 2007 , 217-251		58
106	Gas loss from magmas through conduit walls during eruption. <i>Geological Society Special Publication</i> , 1998 , 145, 73-90	1.7	58
105	Large-scale crustal heterogeneities and lithospheric strength in cratons. <i>Earth and Planetary Science Letters</i> , 1998 , 164, 205-219	5.3	57
104	A thermal model for the distribution in space and time of the Himalayan granites. <i>Earth and Planetary Science Letters</i> , 1987 , 84, 87-99	5.3	57
103	Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. <i>Earth and Planetary Science Letters</i> , 2000 , 178, 139-149	5.3	56
102	The production of chemically stratified and adcumulate plutonic igneous rocks. <i>Mineralogical Magazine</i> , 1996 , 60, 99-114	1.7	55
101	Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data. <i>Journal of Geophysical Research</i> , 2006 , 111,		54
100	A lithospheric instability origin for the Cameroon Volcanic Line. <i>Earth and Planetary Science Letters</i> , 2012 , 335-336, 80-87	5.3	52
99	Physical models of volcanic eruptions. <i>Chemical Geology</i> , 1996 , 128, 217-227	4.2	52
98	Thermal convection in lava lakes. <i>Geophysical Research Letters</i> , 1993 , 20, 1827-1830	4.9	52
97	Some consequences of volcanic edifice destruction for eruption conditions. <i>Journal of Volcanology and Geothermal Research</i> , 2005 , 145, 68-80	2.8	51
96	Influence of cooling on lava-flow dynamics. <i>Geology</i> , 1993 , 21, 335	5	51
95	The impact of a volcanic edifice on intrusive and eruptive activity. <i>Earth and Planetary Science Letters</i> , 2014 , 408, 1-8	5.3	50
94	Expansion and quenching of vesicular magma fragments in Plinian eruptions. <i>Journal of Geophysical Research</i> , 1997 , 102, 12187-12203		49

93	A detailed study of the distribution of heat flow and radioactivity in New Hampshire (U.S.A.). <i>Earth and Planetary Science Letters</i> , 1982 , 59, 267-287	5.3	49
92	Constraints on cooling rates and permeabilities of pumice in an explosive eruption jet from colour and magnetic mineralogy. <i>Journal of Volcanology and Geothermal Research</i> , 1998 , 86, 79-91	2.8	46
91	New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians. <i>Canadian Journal of Earth Sciences</i> , 1989 , 26, 845-852	1.5	45
90	Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield. <i>Journal of Geophysical Research</i> , 2002 , 107, ETG 7-1-ETG 7-19		44
89	Temperatures, Heat, and Energy in the Mantle of the Earth 2015 , 223-270		43
88	Constraints on Crustal Heat Production from Heat Flow Data 2003 , 65-84		43
87	Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle. <i>Journal of Geophysical Research</i> , 2007 , 112,		42
86	Stagnant layers at the bottom of convecting magma chambers. <i>Nature</i> , 1984 , 308, 535-538	50.4	41
85	Ultra-rapid formation of large volumes of evolved magma. <i>Earth and Planetary Science Letters</i> , 2006 , 250, 38-52	5.3	40
84	On the thermal structure of the southern Tibetan crust. <i>Geophysical Journal International</i> , 1985 , 81, 137	1-1.55	40
83	Low mantle heat flow at the edge of the North American Continent, Voisey Bay, Labrador. <i>Geophysical Research Letters</i> , 2000 , 27, 823-826	4.9	39
82	Heat flow variations in the Grenville Province, Canada. <i>Earth and Planetary Science Letters</i> , 1995 , 136, 447-460	5.3	39
81	Chapter 11a. PHYSICAL ASPECTS OF MAGMA DEGASSING I. Experimental and theoretical constraints on vesiculation 1994 , 413-446		39
80	Heat flow in the Trans-Hudson Orogen of the Canadian Shield: Implications for Proterozoic continental growth. <i>Journal of Geophysical Research</i> , 1999 , 104, 29007-29024		38
79	Low heat flux and large variations of lithospheric thickness in the Canadian Shield. <i>Journal of Geophysical Research</i> , 2010 , 115,		35
78	Magma degassing and intermittent lava dome growth. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	34
77	Secular cooling and thermal structure of continental lithosphere. <i>Earth and Planetary Science Letters</i> , 2007 , 257, 83-96	5.3	33
76	The feeder system of the Toba supervolcano from the slab to the shallow reservoir. <i>Nature Communications</i> , 2016 , 7, 12228	17.4	32

(1995-2005)

75	Caldera formation by magma withdrawal from a reservoir beneath a volcanic edifice. <i>Earth and Planetary Science Letters</i> , 2005 , 230, 273-287	5.3	32	
74	Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. <i>Scientific Reports</i> , 2017 , 7, 46094	4.9	31	
73	Generation of continental rifts, basins, and swells by lithosphere instabilities. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 3080-3100	3.6	31	
72	Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid. Journal of Fluid Mechanics, 2007 , 572, 433-469	3.7	31	
71	On the relationship between cycles of eruptive activity and growth of a volcanic edifice. <i>Journal of Volcanology and Geothermal Research</i> , 2010 , 194, 150-164	2.8	30	
70	Heat flow and deep lithospheric thermal structure at Lac de Gras, Slave Province, Canada. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	30	
69	Marginal stability of atmospheric eruption columns and pyroclastic flow generation. <i>Journal of Geophysical Research</i> , 2001 , 106, 21785-21798		30	
68	Ascent and decompression of viscous vesicular magma in a volcanic conduit. <i>Journal of Geophysical Research</i> , 2001 , 106, 16223-16240		30	
67	Continental tectonics and continental kinetics. Earth and Planetary Science Letters, 1985, 74, 171-186	5.3	29	
66	Eruption at Le Piton de la Fournaise volcano on 3 February 1981. <i>Nature</i> , 1982 , 297, 395-397	50.4	29	
65	Rise of volcanic plumes to the stratosphere aided by penetrative convection above large lava flows. <i>Earth and Planetary Science Letters</i> , 2011 , 301, 171-178	5.3	28	
64	Dike propagation through an elastic plate. <i>Journal of Geophysical Research</i> , 1998 , 103, 18295-18314		28	
63	High heat flow in the trans-Hudson Orogen, Central Canadian Shield. <i>Geophysical Research Letters</i> , 1996 , 23, 3027-3030	4.9	28	
62	The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective. <i>Journal of Geophysical Research: Solid Earth</i> , 2014 , 119, 9130-9155	3.6	27	
61	Geoneutrinos and the energy budget of the Earth. Journal of Geodynamics, 2012, 54, 43-54	2.2	27	
60	Two models for the formation of magma reservoirs by small increments. <i>Tectonophysics</i> , 2011 , 500, 34-	49.1	25	
60 59	Two models for the formation of magma reservoirs by small increments. <i>Tectonophysics</i> , 2011 , 500, 34-Heat flow, thermal regime, and elastic thickness of the lithosphere in the Trans-Hudson Orogen. <i>Canadian Journal of Earth Sciences</i> , 2005 , 42, 517-532	.4 9 .1	25 25	

57	Lava flow shapes and dimensions as reflections of magma system conditions. <i>Journal of Volcanology and Geothermal Research</i> , 1997 , 78, 31-50	2.8	24
56	Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow. <i>Journal of Geophysical Research</i> , 2006 , 111,		24
55	Dynamics of magma flow near the vent: Implications for dome eruptions. <i>Earth and Planetary Science Letters</i> , 2009 , 279, 185-196	5.3	22
54	Penetration of mantle plumes through depleted lithosphere. <i>Journal of Geophysical Research</i> , 2005 , 110,		22
53	Likelihood of basaltic eruptions as a function of volatile content and volcanic edifice size. <i>Journal of Volcanology and Geothermal Research</i> , 2004 , 137, 201-217	2.8	22
52	Temperatures at the base of the Laurentide Ice Sheet inferred from borehole temperature data. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	22
51	Magma expansion and fragmentation in a propagating dyke. <i>Earth and Planetary Science Letters</i> , 2011 , 301, 146-152	5.3	21
50	Enhanced crustal geo-neutrino production near the Sudbury Neutrino Observatory, Ontario, Canada. <i>Earth and Planetary Science Letters</i> , 2009 , 288, 301-308	5.3	21
49	Heat Flow and Thermal Structure of the Lithosphere 2007 , 217-251		21
48	Temperature and rheological properties of the mantle beneath the North American craton from an analysis of heat flux and seismic data. <i>Journal of Geophysical Research</i> , 2011 , 116,		20
47	Nonequilibrium temperatures and cooling rates in thick continental lithosphere. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	20
46	Variations of strength and localized deformation in cratons: The 1.9 Ga Kapuskasing uplift, Superior Province, Canada. <i>Earth and Planetary Science Letters</i> , 2006 , 249, 216-228	5.3	18
45	Lithospheric structure of the Canadian Shield inferred from inversion of surface-wave dispersion with thermodynamic a priori constraints. <i>Geological Society Special Publication</i> , 2004 , 239, 175-194	1.7	18
44	Heat flow in the western Superior Province of the Canadian shield. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	18
43	Thermal regime of the lithosphere in the Canadian ShieldThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe parameters, processes, and the evolution of a continent <i>Canadian Journal of Earth Sciences</i> , 2010 , 47, 389-408	1.5	17
42	Microwave-heating laboratory experiments for planetary mantle convection. <i>Journal of Fluid Mechanics</i> , 2015 , 777, 50-67	3.7	15
41	Constraints on Crustal Heat Production from Heat Flow Data 2014 , 53-73		15
40	Low-Frequency Earthquakes and Pore Pressure Transients in Subduction Zones. <i>Geophysical Research Letters</i> , 2018 , 45, 11,083	4.9	15

39	Heat Flow and Thermal Structure of the Lithosphere 2015 , 217-253		14
38	Archean Thermal Regime and Stabilization of the Cratons. <i>Geophysical Monograph Series</i> , 2006 , 61-73	1.1	14
37	Heat flow in the Nipigon arm of the Keweenawan rift, northwestern Ontario, Canada. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	14
36	Post-orogenic thermal evolution of newborn Archean continents. <i>Earth and Planetary Science Letters</i> , 2015 , 432, 36-45	5.3	13
35	The initiation of subduction by crustal extension at a continental margin. <i>Geophysical Journal International</i> , 2012 , 188, 779-797	2.6	12
34	The instability of continental passive margins and its effect on continental topography and heat flow. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 1817-1836	3.6	12
33	Marginal stability of thick continental lithosphere. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	12
32	Simultaneous inversion of gravity and heat flow data: constraints on thermal regime, rheology and evolution of the Canadian Shield crust?. <i>Journal of Geodynamics</i> , 2002 , 34, 11-30	2.2	12
31	Effects of compressibility on the flow of lava. Bulletin of Volcanology, 1991, 54, 1-9	2.4	12
30	CHAPTER 8. DYNAMICS OF ERUPTIVE PHENOMENA 1990 , 213-238		12
29	The distributions of slip rate and ductile deformation in a strike-slip shear zone. <i>Geophysical Journal International</i> , 2002 , 148, 179-192	2.6	11
29 28		2.6 3.6	11
	International, 2002, 148, 179-192 Postemplacement dynamics of basaltic intrusions in the continental crust. <i>Journal of Geophysical</i>		
28	Postemplacement dynamics of basaltic intrusions in the continental crust. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 966-987 The fate of mafic and ultramafic intrusions in the continental crust. <i>Earth and Planetary Science</i>	3.6	10
28	Postemplacement dynamics of basaltic intrusions in the continental crust. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 966-987 The fate of mafic and ultramafic intrusions in the continental crust. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 131-140	3.6 5·3	10
28 27 26	Postemplacement dynamics of basaltic intrusions in the continental crust. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 966-987 The fate of mafic and ultramafic intrusions in the continental crust. <i>Earth and Planetary Science Letters</i> , 2016 , 453, 131-140 Folding in regions of extension. <i>Geophysical Journal International</i> , 2011 , 185, 1120-1134 Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean. <i>Nature</i> ,	3.6 5·3 2.6	10
28 27 26 25	Postemplacement dynamics of basaltic intrusions in the continental crust. Journal of Geophysical Research: Solid Earth, 2017, 122, 966-987 The fate of mafic and ultramafic intrusions in the continental crust. Earth and Planetary Science Letters, 2016, 453, 131-140 Folding in regions of extension. Geophysical Journal International, 2011, 185, 1120-1134 Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean. Nature, 2019, 575, 485-488 Fundamentals of laminar free convection in internally heated fluids at values of the	3.6 5·3 2.6	10 10 10

21	Convection in an internally heated stratified heterogeneous reservoir. <i>Journal of Fluid Mechanics</i> , 2019 , 870, 67-105	3.7	8
20	Influence of cooling on lava-flow dynamics: Comment and Reply. <i>Geology</i> , 1994 , 22, 93	5	7
19	Characteristic Dimensions and Times for Dynamic Crystallization 1987 , 613-639		7
18	What the Mantle Sees: The Effects of Continents on Mantle Heat Flow. <i>Geophysical Monograph Series</i> , 2000 , 95-112	1.1	6
17	The effects of alteration and the interpretation of heat flow and radioactivity datall reply to R.U.M. Rao. <i>Earth and Planetary Science Letters</i> , 1983 , 62, 430-438	5.3	5
16	The Earth mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources. <i>Experiments in Fluids</i> , 2017 , 58, 1	2.5	4
15	CHAPTER 5. PHYSICAL PROCESSES IN THE EVOLUTION OF MAGMAS 1990 , 125-152		4
14	Heat flow constraints on the mafic character of Archean continental crust. <i>Earth and Planetary Science Letters</i> , 2021 , 571, 117091	5.3	3
13	The Eruption and Spreading of Lava. <i>The IMA Volumes in Mathematics and Its Applications</i> , 1992 , 175-203	3 0.5	3
12	The Sudbury Huronian heat flow anomaly, Ontario, Canada. <i>Precambrian Research</i> , 2017 , 295, 187-202	3.9	2
11	Seismic tremor reveals active trans-crustal magmatic system beneath Kamchatka volcanoes <i>Science Advances</i> , 2022 , 8, eabj1571	14.3	2
10	Towards Scaling Laws for the Interpretation of Igneous Structures 1987 , 327-347		2
9	Convection and Macrosegregation in Magma Chambers 1992 , 241-260		2
8	Microwave-based, internally-heated convection: New perspectives for the heterogeneous case 2015 ,		1
7	New Experiments on Compositional Convection 1992 , 155-158		1
6	Episodicity and Migration of Low Frequency Earthquakes Modeled With Fast Fluid Pressure Transients in the Permeable Subduction Interface. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2021JB021894	3.6	1
5	Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. <i>Earth and Planetary Science Letters</i> , 2004 , 223, 65-65	5.3	
4	Reply [to Comment on Compositional convection in a reactive crystalline mush and melt differentiation by Stephen Tait and Claude Jaupart Journal of Geophysical Research, 1994, 99, 11919-1	1921	

LIST OF PUBLICATIONS

3	Lithosphere, Continental: Thermal Structure. <i>Encyclopedia of Earth Sciences Series</i> , 2020 , 1-13	O
2	The Formation of Continental Crust from a Physics Perspective. <i>Geochemistry International</i> , 2018 , 56, 1289-1321	0.8
1	Interactive simulation of plume and pyroclastic volcanic ejections. <i>Proceedings of the ACM on Computer Graphics and Interactive Techniques</i> , 2022 , 5, 1-15	2.3