Rupesh Rohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141845/publications.pdf Version: 2024-02-01

RUDESH ROHAN

#	Article	IF	CITATIONS
1	Enhancement of the High-Rate Performance of an Organic Radical Thin-Film Battery by Decreasing the Grafting Density of Polymer Brushes. ACS Applied Polymer Materials, 2022, 4, 2365-2372.	4.4	11
2	Investigation of supercapacitor cyclic degradation through impedance spectroscopy and Randles circuit model. Energy Storage, 2022, 4, .	4.3	6
3	Two-dimensional molybdenum trioxide nanoflakes wrapped with interlayer-expanded molybdenum disulfide nanosheets: Superior performances in supercapacitive energy storage and visible-light-driven photocatalysis. International Journal of Hydrogen Energy, 2021, 46, 34663-34678.	7.1	6
4	Carbon clothâ€MnO ₂ nanotube composite for flexible supercapacitor. Energy Storage, 2020, 2, e189.	4.3	20
5	Performance optimization of Co2O3-PVDF-CNT-based supercapacitor electrode through multi-response optimization method. Ionics, 2019, 25, 5991-6005.	2.4	15
6	Investigation of compressed hydrogen refueling process of 60 L type IV tank used in fuel cell vehicles. Energy Storage, 2019, 1, e91.	4.3	9
7	Flexible supercapacitor based on threeâ€dimensional cellulose/graphite/polyaniline composite. International Journal of Energy Research, 2019, 43, 604-611.	4.5	55
8	Ambient temperature hydrogen storage in porous materials with exposed metal sites. International Journal of Hydrogen Energy, 2017, 42, 6801-6809.	7.1	15
9	Nanofiber Singleâ€ion Conducting Electrolytes: An Approach for Highâ€Performance Lithium Batteries at Ambient Temperature. ChemElectroChem, 2017, 4, 2178-2183.	3.4	11
10	Hierarchy concomitant in situ stable iron(II)â^'carbon source manipulation using ferrocenecarboxylic acid for hydrothermal synthesis of LiFePO4 as high-capacity battery cathode. Electrochimica Acta, 2017, 253, 227-238.	5.2	12
11	A pre-lithiated phloroglucinol based 3D porous framework as a single ion conducting electrolyte for lithium ion batteries. RSC Advances, 2016, 6, 53140-53147.	3.6	14
12	A green and facile approach for hydrothermal synthesis of LiFePO 4 using iron metal directly. Electrochimica Acta, 2016, 220, 164-168.	5.2	33
13	Dinitrile–Mononitrile-Based Electrolyte System for Lithium-Ion Battery Application with the Mechanism of Reductive Decomposition of Mononitriles. Journal of Physical Chemistry C, 2016, 120, 6450-6458.	3.1	33
14	Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp boron-based solid single ion conducting polymer electrolyte. Journal of Power Sources, 2016, 306, 152-161.	7.8	73
15	A novel sp ³ Al-based porous single-ion polymer electrolyte for lithium ion batteries. RSC Advances, 2015, 5, 32343-32349.	3.6	9
16	Polymeric organo–magnesium complex for room temperature hydrogen physisorption. RSC Advances, 2015, 5, 10886-10891.	3.6	21
17	Melamine–terephthalaldehyde–lithium complex: a porous organic network based single ion electrolyte for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5132-5139.	10.3	46
18	A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 20267-20276.	10.3	83

Rupesh Rohan

#	Article	IF	CITATIONS
19	A Polyamide Single″on Electrolyte Membrane for Application in Lithium″on Batteries. Energy Technology, 2014, 2, 698-704.	3.8	31
20	Lithiumâ€lon Batteries with a Wide Temperature Range Operability Enabled by Highly Conductive sp ³ Boronâ€Based Single Ion Polymer Electrolytes. Energy Technology, 2014, 2, 643-650.	3.8	26
21	Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide. Journal of Materials Science, 2014, 49, 3442-3450.	3.7	38
22	Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries. Solid State Ionics, 2014, 268, 294-299.	2.7	66
23	Highly selective carbon dioxide adsorption on exposed magnesium metals in a cross-linked organo-magnesium complex. Journal of Materials Chemistry A, 2014, 2, 13534-13540.	10.3	21
24	Hydrogen physisorption in ionic solid compounds with exposed metal cations at room temperature. RSC Advances, 2014, 4, 33905-33910.	3.6	8
25	Influence of Chemical Microstructure of Single-Ion Polymeric Electrolyte Membranes on Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 17534-17542.	8.0	57
26	A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability. RSC Advances, 2014, 4, 21163-21170.	3.6	45
27	Synthesis, Characterization and Battery Performance of A Lithium Poly (4-vinylphenol) Phenolate Borate Composite Membrane. Electrochimica Acta, 2014, 139, 264-269.	5.2	28
28	Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries. RSC Advances, 2014, 4, 43857-43864.	3.6	40
29	Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 2960-2967.	10.3	55
30	A lithium poly(pyromellitic acid borate) gel electrolyte membrane for lithium-ion batteries. Journal of Materials Science, 2014, 49, 6111-6117.	3.7	22
31	Room Temperature Hydrogen Physisorption on Exposed Metals in A Highly Crossâ€Linked Organoâ€Iron Complex. Advanced Materials Interfaces, 2014, 1, 1400107.	3.7	11
32	A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries. RSC Advances, 2013, 3, 14934.	3.6	34