
Salvador OrdÃ³ñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1418440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on Î ³ -alumina catalyst. Applied Catalysis B: Environmental, 2002, 38, 139-149.	20.2	223
2	Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 2012, 113-114, 201-211.	20.2	184
3	Adsorption of CO ₂ on Hydrotalcite-Derived Mixed Oxides: Sorption Mechanisms and Consequences for Adsorption Irreversibility. Industrial & Engineering Chemistry Research, 2010, 49, 3663-3671.	3.7	179
4	Ethanol catalytic condensation over Mg–Al mixed oxides derived from hydrotalcites. Catalysis Today, 2011, 164, 436-442.	4.4	163
5	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Applied Catalysis B: Environmental, 2017, 204, 430-439.	20.2	156
6	Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. Journal of Colloid and Interface Science, 2007, 305, 7-16.	9.4	148
7	Hydrodechlorination of aliphatic organochlorinated compounds over commercial hydrogenation catalysts. Applied Catalysis B: Environmental, 2000, 25, 49-58.	20.2	97
8	Development of a kinetic model for the oxidation of methane over Pd/Al2O3 at dry and wet conditions. Applied Catalysis B: Environmental, 2004, 51, 229-238.	20.2	93
9	Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere, 2015, 136, 174-180.	8.2	88
10	Hydrotalcite-derived mixed oxides as catalysts for different C–C bond formation reactions from bioorganic materials. Catalysis Today, 2011, 167, 71-76.	4.4	83
11	Enhancement of the CO ₂ Retention Capacity of Y Zeolites by Na and Cs Treatments:  Effect of Adsorption Temperature and Water Treatment. Industrial & Engineering Chemistry Research, 2008, 47, 412-418.	3.7	82
12	Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. Journal of Chromatography A, 2004, 1049, 139-146.	3.7	80
13	Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey. Renewable and Sustainable Energy Reviews, 2015, 51, 273-287.	16.4	77
14	Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. Journal of Chromatography A, 2008, 1188, 264-273.	3.7	76
15	Consequences of the iron–aluminium exchange on the performance of hydrotalcite-derived mixed oxides for ethanol condensation. Applied Catalysis B: Environmental, 2011, 102, 590-599.	20.2	75
16	Sulphur poisoning of transition metal oxides used as catalysts for methane combustion. Applied Catalysis A: General, 2008, 341, 174-180.	4.3	71
17	Combustion of Methane in Lean Mixtures over Bulk Transition-Metal Oxides: Evaluation of the Activity and Self-Deactivation. Energy & Fuels, 2009, 23, 86-93.	5.1	69
18	Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation. Applied Catalysis B: Environmental, 2017, 201, 221-231.	20.2	68

#	Article	IF	CITATIONS
19	Characterisation and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloroethylene. Applied Catalysis B: Environmental, 2001, 29, 263-273.	20.2	66
20	Combustion of methane over palladium catalyst in the presence of inorganic compounds: inhibition and deactivation phenomena. Applied Catalysis B: Environmental, 2004, 47, 85-93.	20.2	65
21	Enhancement of the CO2 retention capacity of X zeolites by Na- and Cs-treatments. Chemosphere, 2008, 70, 1375-1382.	8.2	65
22	Improvement on the Catalytic Performance of Mg–Zr Mixed Oxides for Furfural–Acetone Aldol Condensation by Supporting on Mesoporous Carbons. ChemSusChem, 2013, 6, 463-473.	6.8	64
23	Oneâ€pot Aldol Condensation and Hydrodeoxygenation of Biomassâ€derived Carbonyl Compounds for Biodiesel Synthesis. ChemSusChem, 2014, 7, 2816-2820.	6.8	64
24	Oxidation of methane over palladium catalysts: effect of the support. Chemosphere, 2005, 58, 9-17.	8.2	62
25	Combustion of methane lean mixtures in reverse flow reactors: Comparison between packed and structured catalyst beds. Catalysis Today, 2005, 105, 701-708.	4.4	61
26	Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts. Journal of Catalysis, 2010, 272, 158-168.	6.2	60
27	Modification of the adsorption properties of high surface area graphites by oxygen functional groups. Carbon, 2008, 46, 2096-2106.	10.3	58
28	Aqueous Phase Conversion of Hexoses into 5-Hydroxymethylfurfural and Levulinic Acid in the Presence of Hydrochloric Acid: Mechanism and Kinetics. Industrial & Engineering Chemistry Research, 2017, 56, 5221-5230.	3.7	58
29	Gas phase acetone self-condensation over unsupported and supported Mg–Zr mixed-oxides catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 387-395.	20.2	56
30	Catalytic combustion of hexane over transition metal modified zeolites NaX and CaA. Applied Catalysis B: Environmental, 2005, 56, 313-322.	20.2	55
31	Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties. Chemosphere, 2007, 66, 1706-1715.	8.2	55
32	Minimization of the deactivation of palladium catalysts in the hydrodechlorination of trichloroethylene in wastewaters. Applied Catalysis B: Environmental, 2010, 95, 288-296.	20.2	55
33	Hydrodeoxygenation of acetone–furfural condensation adducts over alumina-supported noble metal catalysts. Applied Catalysis B: Environmental, 2014, 160-161, 436-444.	20.2	54
34	Aqueousâ€Phase Transformation of Glucose into Hydroxymethylfurfural and Levulinic Acid by Combining Homogeneous and Heterogeneous Catalysis. ChemSusChem, 2019, 12, 924-934.	6.8	51
35	Hydrodechlorination of tetrachloroethene over Pd/Al2O3: influence of process conditions on catalyst performance and stability. Applied Catalysis B: Environmental, 2003, 40, 119-130.	20.2	48
36	Methane catalytic combustion over Pd/Al2O3 in presence of sulphur dioxide: development of a deactivation model. Applied Catalysis A: General, 2004, 259, 41-48.	4.3	47

#	Article	IF	CITATIONS
37	Adsorption properties of a Pd \hat{l}^3 -Al2O3 catalyst using inverse gas chromatography. Microporous and Mesoporous Materials, 2004, 70, 109-118.	4.4	47
38	Combustion of trichloroethylene and dichloromethane over protonic zeolites: Influence of adsorption properties on the catalytic performance. Microporous and Mesoporous Materials, 2006, 91, 161-169.	4.4	47
39	Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support. Journal of Hazardous Materials, 2008, 153, 742-750.	12.4	47
40	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catalysis Today, 2018, 315, 138-148.	4.4	47
41	Performance of alumina-supported noble metal catalysts for the combustion of trichloroethene at dry and wet conditions. Applied Catalysis B: Environmental, 2006, 64, 262-271.	20.2	45
42	Catalytic Hydrodechlorination of Chlorinated Olefins over a Pd/Al2O3 Catalyst:  Kinetics and Inhibition Phenomena. Industrial & Engineering Chemistry Research, 2002, 41, 505-511.	3.7	43
43	Procedures for heat recovery in the catalytic combustion of lean methane–air mixtures in a reverse flow reactor. Chemical Engineering Journal, 2009, 147, 356-365.	12.7	43
44	Kinetic study of the gas-phase hydrogenation of aromatic and aliphatic organochlorinated compounds using a Pd/Al2O3 catalyst. Journal of Hazardous Materials, 2003, 97, 281-294.	12.4	42
45	Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study. Catalysis Communications, 2006, 7, 945-949.	3.3	41
46	Performance of bifunctional Pd/MxNyO (M=Mg, Ca; N=Zr, Al) catalysts for aldolization–hydrogenation of furfural–acetone mixtures. Catalysis Today, 2011, 164, 451-456.	4.4	39
47	Preparation of nitrogen-containing carbon nanotubes and study of their performance as basic catalysts. Applied Catalysis A: General, 2013, 458, 155-161.	4.3	39
48	Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO ₂ Anatase. Journal of Physical Chemistry C, 2017, 121, 6770-6780.	3.1	39
49	High-surface area graphites as supports for hydrodechlorination catalysts: Tuning support surface chemistry for an optimal performance. Applied Catalysis B: Environmental, 2010, 99, 181-190.	20.2	38
50	Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere, 2015, 119, S124-S130.	8.2	38
51	Direct synthesis of dimethyl ether from syngas over mechanical mixtures of CuO/ZnO/Al2O3 and γ-Al2O3: Process optimization and kinetic modelling. Fuel Processing Technology, 2017, 168, 40-49.	7.2	38
52	Comparison of adsorption properties of a chemically activated and a steam-activated carbon, using inverse gas chromatography. Microporous and Mesoporous Materials, 2005, 82, 173-181.	4.4	37
53	Design and testing of small-scale unsteady-state afterburners and reactors. AICHE Journal, 2005, 51, 1654-1664.	3.6	37
54	Hemicellulose hydrolysis and hydrolytic hydrogenation over proton- and metal modified beta zeolites. Microporous and Mesoporous Materials, 2014, 189, 189-199.	4.4	37

#	Article	IF	CITATIONS
55	A review of the adsorption-biological hybrid processes for the abatement of emerging pollutants: Removal efficiencies, physicochemical analysis, and economic evaluation. Science of the Total Environment, 2021, 780, 146554.	8.0	37
56	Benzylation of benzene over Fe-modified ZSM-5 zeolites: Correlation between activity and adsorption properties. Applied Catalysis A: General, 2005, 295, 106-115.	4.3	36
57	Baseâ€Catalyzed Condensation of Levulinic Acid: A New Biorefinery Upgrading Approach. ChemCatChem, 2016, 8, 1490-1494.	3.7	36
58	Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels. Waste Management, 2016, 47, 164-173.	7.4	36
59	Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catalysis Today, 2012, 196, 26-33.	4.4	35
60	Effect of hydrothermal ageing on the performance of Ce-promoted PdO/ZrO2 for methane combustion. Catalysis Communications, 2008, 9, 2291-2296.	3.3	34
61	Methane catalytic combustion over Pd/Al2O3 in presence of sulphur dioxide: development of a regeneration procedure. Catalysis Letters, 2005, 100, 27-34.	2.6	33
62	Effect of carbonaceous supports on the Pd-catalyzed aqueous-phase trichloroethylene hydrodechlorination. Applied Catalysis B: Environmental, 2011, 104, 415-417.	20.2	33
63	Modelling of hydrogen perm-selective membrane reactors for catalytic methane steam reforming. International Journal of Hydrogen Energy, 2012, 37, 18433-18445.	7.1	33
64	Gas-Phase Hydrodeoxygenation of Benzaldehyde, Benzyl Alcohol, Phenyl Acetate, and Anisole over Precious Metal Catalysts. Industrial & Engineering Chemistry Research, 2016, 55, 2319-2327.	3.7	33
65	Hydrodeoxygenation of furfural-acetone condensation adducts to tridecane over platinum catalysts. Catalysis Today, 2016, 269, 132-139.	4.4	33
66	Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide. Chemosphere, 2004, 55, 681-689.	8.2	32
67	Cyclopentanone as an Alternative Linking Reactant for Heterogeneously Catalyzed Furfural Aldol Condensation. ChemCatChem, 2017, 9, 1765-1770.	3.7	32
68	Consequences of MgO activation procedures on its catalytic performance for acetone self-condensation. Applied Catalysis B: Environmental, 2014, 147, 796-804.	20.2	31
69	Fixed bed membrane reactors for WGSR-based hydrogen production: Optimisation of modelling approaches and reactor performance. International Journal of Hydrogen Energy, 2012, 37, 4997-5010.	7.1	30
70	Effect of sludge features and extraction-esterification technology on the synthesis of biodiesel from secondary wastewater treatment sludges. Bioresource Technology, 2018, 247, 209-216.	9.6	30
71	Evaluation of different zeolites in their parent and protonated forms for the catalytic combustion of hexane and benzene. Microporous and Mesoporous Materials, 2005, 83, 292-300.	4.4	29
72	Evaluation of the use of ceramic foams as catalyst supports for reverse-flow combustors. Chemical Engineering Journal, 2013, 221, 44-54.	12.7	29

Salvador Ordóñez

#	Article	IF	CITATIONS
73	Synthesis of poly(oxymethylene) dimethyl ethers from methylal and trioxane over acidic ion exchange resins: A kinetic study. Chemical Engineering Journal, 2020, 396, 125305.	12.7	28
74	Liquid hold-up and gas–liquid mass transfer in an alumina open-cell foam. Chemical Engineering Science, 2016, 143, 297-304.	3.8	27
75	Effect of Substituents on Partial Photocatalytic Oxidation of Aromatic Alcohols Assisted by Polymeric C ₃ N ₄ . ChemCatChem, 2019, 11, 2713-2724.	3.7	27
76	Reverse flow reactors as sustainable devices for performing exothermic reactions: Applications and engineering aspects. Chemical Engineering and Processing: Process Intensification, 2019, 135, 175-189.	3.6	27
77	Hydrogen adsorption on Pd-modified carbon nanofibres: Influence of CNF surface chemistry and impregnation procedure. International Journal of Hydrogen Energy, 2010, 35, 4576-4581.	7.1	26
78	Combustion of coal mine ventilation air methane in a regenerative combustor with integrated adsorption: Reactor design and optimization. Applied Thermal Engineering, 2016, 102, 167-175.	6.0	26
79	Improvement of the stability of basic mixed oxides used as catalysts for aldol condensation of bio-derived compounds by palladium addition. Biomass and Bioenergy, 2013, 56, 592-599.	5.7	25
80	Open-cell foams as beds in multiphase reactors: Residence time distribution and mass transfer. Chemical Engineering Journal, 2017, 316, 323-331.	12.7	25
81	Carbon and ecological footprints as tools for evaluating the environmental impact of coal mine ventilation air. Ecological Indicators, 2012, 18, 126-130.	6.3	24
82	Role of surface intermediates in the deactivation of Mg Zr mixed oxides in acetone self-condensation: A combined DRIFT and ex situ characterization approach. Journal of Catalysis, 2015, 329, 1-9.	6.2	24
83	Pre-concentration of nalidixic acid through adsorption–desorption cycles: Adsorbent selection and modeling. Chemical Engineering Journal, 2016, 283, 486-494.	12.7	24
84	Direct synthesis of dimethyl ether in multi-tubular fixed-bed reactors: 2D multi-scale modelling and optimum design. Fuel Processing Technology, 2018, 174, 149-157.	7.2	24
85	Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. Science of the Total Environment, 2021, 790, 148211.	8.0	24
86	Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography. Journal of Chromatography A, 2004, 1049, 161-169.	3.7	23
87	Comparative study on the gas-phase adsorption of hexane over zeolites by calorimetry and inverse gas chromatography. Journal of Chromatography A, 2005, 1095, 131-137.	3.7	23
88	Characterization of ceria–zirconia mixed oxides as catalysts for the combustion of volatile organic compounds using inverse gas chromatography. Journal of Chromatography A, 2006, 1116, 230-239.	3.7	23
89	Hydrodeoxygenation of Acetophenone over Supported Precious Metal Catalysts at Mild Conditions: Process Optimization and Reaction Kinetics. Energy & Fuels, 2015, 29, 8208-8215.	5.1	23
90	Evaluation of adsorption properties of zeolites using inverse gas chromatography: comparison with immersion calorimetry. Thermochimica Acta, 2005, 434, 9-14.	2.7	22

#	Article	IF	CITATIONS
91	Design and testing of a control system for reverse-flow catalytic afterburners. AICHE Journal, 2005, 51, 3020-3027.	3.6	22
92	Coal mine ventilation air methane combustion in a catalytic reverse flow reactor: Influence of emission humidity. Fuel Processing Technology, 2015, 133, 202-209.	7.2	22
93	Influence of catalyst treatments on the adsorption properties of γ-Al2O3 supported Pt, Rh and Ru catalysts. Microporous and Mesoporous Materials, 2005, 77, 245-255.	4.4	21
94	Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: Development of a kinetic model. Chemical Engineering Journal, 2015, 270, 122-132.	12.7	21
95	Tuning the selectivities of Mg-Al mixed oxides for ethanol upgrading reactions through the presence of transition metals. Applied Catalysis A: General, 2018, 559, 167-174.	4.3	21
96	Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study. Separation and Purification Technology, 2018, 194, 10-18.	7.9	21
97	Aldol Condensation of Biomass-Derived Levulinic Acid and Furfural over Acid Zeolites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4371-4383.	6.7	21
98	Adsorption of methane and nitrogen on Basolite MOFs: Equilibrium and kinetic studies. Microporous and Mesoporous Materials, 2020, 298, 110048.	4.4	21
99	Simplified design methods of reverse flow catalytic combustors for the treatment of lean hydrocarbon–air mixtures. Chemical Engineering and Processing: Process Intensification, 2009, 48, 229-238.	3.6	20
100	Performance of carbon nanofibres, high surface area graphites, and activated carbons as supports of Pd-based hydrodechlorination catalysts. Catalysis Today, 2010, 150, 16-21.	4.4	20
101	Role of the surface intermediates in the stability of basic mixed oxides as catalyst for ethanol condensation. Applied Catalysis A: General, 2017, 542, 271-281.	4.3	20
102	Effect of sewage sludge composition on the susceptibility to spontaneous combustion. Journal of Hazardous Materials, 2019, 361, 267-272.	12.4	20
103	Simulation of an industrial-scale process for the SCR of NOx based on the loop reactor concept. Chemical Engineering and Processing: Process Intensification, 2009, 48, 311-320.	3.6	19
104	Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: An inverse gas chromatography study. Journal of Chromatography A, 2013, 1274, 173-180.	3.7	19
105	A new peroxo-route for the synthesis of Mg–Zr mixed oxides catalysts: Application in the gas phase acetone self-condensation. Applied Catalysis A: General, 2014, 477, 26-33.	4.3	19
106	Enhancement of the 1-butanol productivity in the ethanol condensation catalyzed by noble metal nanoparticles supported on Mg-Al mixed oxide. Applied Catalysis A: General, 2018, 563, 64-72.	4.3	19
107	A new method for controlling the ignition state of a regenerative combustor using a heat storage device. Applied Energy, 2014, 116, 322-332.	10.1	18
108	Exceptional thermal stability of undoped anatase TiO ₂ photocatalysts prepared by a solvent-exchange method. RSC Advances, 2015, 5, 36634-36641.	3.6	18

#	Article	IF	CITATIONS
109	Assessment of phenol wet oxidation on CuO/γ-Al2O3 catalysts: Competition between heterogeneous and leached-copper homogeneous reaction paths. Journal of Environmental Chemical Engineering, 2017, 5, 2570-2578.	6.7	18
110	Effect of the catalyst properties on the performance of a reverse flow reactor for methane combustion in lean mixtures. Chemical Engineering Journal, 2007, 129, 1-10.	12.7	17
111	Monoliths as suitable catalysts for reverseâ€flow combustors: Modeling and experimental validation. AICHE Journal, 2010, 56, 3162-3173.	3.6	17
112	Performance of siliconâ€carbide foams as supports for Pdâ€based methane combustion catalysts. Journal of Chemical Technology and Biotechnology, 2012, 87, 360-367.	3.2	17
113	Catalyst deactivation in the direct synthesis of dimethyl ether from syngas over CuO/ZnO/Al2O3 and γ-Al2O3 mechanical mixtures. Fuel Processing Technology, 2018, 179, 378-386.	7.2	17
114	Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Science and Technology, 2019, 79, 480-488.	2.5	17
115	Enrichment of low concentration methane: an overview of ventilation air methane. Journal of Materials Chemistry A, 2022, 10, 6397-6413.	10.3	17
116	Preparation of carbon nanofibres supported palladium catalysts for hydrodechlorination reactions. Catalysis Communications, 2008, 9, 2080-2084.	3.3	16
117	Demonstration of a control system for combustion of lean hydrocarbon emissions in a reverse flow reactor. Chemical Engineering Science, 2010, 65, 54-59.	3.8	16
118	Trichloroethylene Hydrodechlorination in Water Using Formic Acid as Hydrogen Source: Selection of Catalyst and Operation Conditions. Environmental Progress and Sustainable Energy, 2013, 32, 1217-1222.	2.3	16
119	Reduction of carbon dioxide via catalytic hydrogenation over copper-based catalysts modified by oyster shell-derived calcium oxide. Journal of Environmental Chemical Engineering, 2017, 5, 3115-3121.	6.7	16
120	Direct oxidation of methane to methanol over Cu-zeolites at mild conditions. Molecular Catalysis, 2020, 487, 110886.	2.0	16
121	Transition metal-exchanged LTA zeolites as novel catalysts for methane combustion. Catalysis Today, 2010, 157, 425-431.	4.4	15
122	Selective arabinose extraction from Pinus sp. sawdust by two-step soft acid hydrolysis. Industrial Crops and Products, 2017, 104, 229-236.	5.2	15
123	Enhancement of furfural–cyclopentanone aldol condensation using binary water–ethanol mixtures as solvent. Journal of Chemical Technology and Biotechnology, 2018, 93, 1563-1571.	3.2	15
124	Copperâ€Basic Sites Synergic Effect on the Ethanol Dehydrogenation and Condensation Reactions. ChemCatChem, 2018, 10, 3583-3592.	3.7	15
125	Effect of wall properties on the behavior of bench-scale reverse flow reactors. AICHE Journal, 2006, 52, 3203-3209.	3.6	14
126	Combustion of toluene–hexane binary mixtures in a reverse flow catalytic reactor. Chemical Engineering Science, 2008, 63, 5003-5009.	3.8	14

Salvador $Ord \tilde{A}^3 \tilde{A} \pm ez$

#	Article	IF	CITATIONS
127	A hydrothermal peroxo method for preparation of highly crystalline silica–titania photocatalysts. Journal of Colloid and Interface Science, 2015, 444, 87-96.	9.4	14
128	Densification-Induced Structure Changes in Basolite MOFs: Effect on Low-Pressure CH4 Adsorption. Nanomaterials, 2020, 10, 1089.	4.1	14
129	Ammonia Oxidation over Conventional Combustion Catalysts. Reaction Kinetics and Catalysis Letters, 2002, 76, 61-68.	0.6	13
130	Regeneration of Pd/Al2O3 catalysts used for tetrachloroethylene hydrodechlorination. Reaction Kinetics and Catalysis Letters, 2007, 90, 101-106.	0.6	13
131	A kinetic study of CO2 desorption from basic materials: Correlation with adsorption properties. Chemical Engineering Journal, 2011, 175, 341-348.	12.7	13
132	Consequences of cavity size and palladium addition on the selective hydrogen adsorption in isoreticular metal-organic frameworks. Thermochimica Acta, 2013, 567, 79-84.	2.7	13
133	Synthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalyst. Applied Catalysis A: General, 2016, 527, 137-145.	4.3	13
134	Carbon Materials as Phaseâ€Transfer Promoters for Obtaining 5â€Hydroxymethylfurfural from Cellulose in a Biphasic System. ChemSusChem, 2019, 12, 3769-3777.	6.8	13
135	A New Procedure for the Treatment of Organochlorinated Off-Gases Combining Adsorption and Catalytic Hydrodechlorination. Environmental Science & amp; Technology, 2009, 43, 1999-2004.	10.0	12
136	Hydrocarbons adsorption on metal trimesate MOFs: Inverse gas chromatography and immersion calorimetry studies. Thermochimica Acta, 2015, 602, 36-42.	2.7	12
137	Selective catalytic reduction of NO in a reverse-flow reactor: Modelling and experimental validation. Applied Energy, 2015, 138, 183-192.	10.1	12
138	Performance of ceramic foams as gas–liquid contactors for phenol wet oxidation in the trickle regime. Catalysis Today, 2016, 273, 172-177.	4.4	12
139	Optimization of the process conditions for minimizing the deactivation in the furfural-cyclopentanone aldol condensation in a continuous reactor. Applied Catalysis B: Environmental, 2020, 263, 118341.	20.2	12
140	Control of regenerative catalytic oxidizers used in coal mine ventilation air methane exploitation. Chemical Engineering Research and Design, 2020, 134, 333-342.	5.6	12
141	Effect of pretreatments and catalytic route in the quality and productivity of biodiesel obtained from secondary sludge. Biomass and Bioenergy, 2021, 152, 106195.	5.7	12
142	Transformación de biomasa en biocombustibles de segunda generación. Madera Bosques, 2014, 20, 11-24.	0.2	12
143	Comments on "Catalytic applications of red mud, an aluminium industry waste: A review― Applied Catalysis B: Environmental, 2008, 84, 732-733.	20.2	11
144	Thermally induced sintering and redispersion of Au nanoparticles supported on Ce1-xEuxO2 nanocubes and their influence on catalytic CO oxidation. Catalysis Communications, 2019, 131, 105798.	3.3	11

#	Article	IF	CITATIONS
145	Selective synthesis of γ-valerolactone from levulinic and formic acid over ZnAl mixed oxide. Chemical Engineering Journal, 2021, 414, 128902.	12.7	11
146	Combustion of medium concentration CH4–air mixtures in non-stationary reactors. Chemical Engineering Journal, 2007, 131, 343-349.	12.7	10
147	Methane separation from diluted mixtures by fixed bed adsorption using MOFs: Model validation and parametric studies. Separation and Purification Technology, 2020, 251, 117374.	7.9	10
148	From biomass to diesel additives: Hydrogenation of cyclopentanone-furfural aldol condensation adducts. Journal of Environmental Chemical Engineering, 2021, 9, 105328.	6.7	10
149	One-Pot Conversion of Acetone into Mesitylene over Combinations of Acid and Basic Catalysts. ACS Catalysis, 2021, 11, 11650-11662.	11.2	10
150	Systematic study of the performance of a reverse flow reactor for the treatment of lean hydrocarbon emissions. Journal of Chemical Technology and Biotechnology, 2009, 84, 1292-1302.	3.2	9
151	Performance of reverse flow monolithic reactor for water–gas shift reaction. Catalysis Today, 2009, 147, S185-S190.	4.4	9
152	The role of reaction kinetics and mass transfer in the selective catalytic reduction of <scp>NO</scp> with <scp>NH₃</scp> in monolithic reactors. Journal of Chemical Technology and Biotechnology, 2015, 90, 1299-1307.	3.2	9
153	Effect of metal modification of titania and hydrogen co-feeding on the reaction pathways and catalytic stability in the acetone aldol condensation. Journal of Catalysis, 2019, 377, 133-144.	6.2	9
154	Influence of delignification and reaction conditions in the aqueous phase transformation of lignocellulosic biomass to platform molecules. Bioresource Technology, 2021, 321, 124500.	9.6	9
155	Effect of organosulphur, organonitrogen and organooxygen compounds on the hydrodechlorination of tetrachloroethylene over Pd/Al2O3. Applied Catalysis B: Environmental, 2008, 82, 264-272.	20.2	8
156	Experimental demonstration and modeling of an adsorption-enhanced reverse flow reactor for the catalytic combustion of coal mine ventilation air methane. Chemical Engineering Journal, 2015, 279, 198-206.	12.7	8
157	Photocatalytic degradation of 2-(4-methylphenoxy)ethanol over TiO2 spheres. Journal of Hazardous Materials, 2017, 332, 59-69.	12.4	8
158	Concentration of unconventional methane resources using microporous membranes: Process assessment and scale-up. Journal of Natural Gas Science and Engineering, 2020, 81, 103420.	4.4	8
159	Effect of formaldehyde precursor and water inhibition in dimethoxymethane synthesis from methanol over acidic ion exchange resins: mechanism and kinetics. Biofuels, Bioproducts and Biorefining, 2021, 15, 1696-1708.	3.7	8
160	Catalytic combustion of sulphur-containing methane lean emissions in a reverse-flow reactor with integrated adsorption. Chemical Engineering Journal, 2016, 285, 39-48.	12.7	7
161	Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes. Journal of Hazardous Materials, 2017, 323, 621-631.	12.4	7
162	Carbon nanotube modified glassy carbon electrode for electrochemical oxidation of alkylphenol ethoxylate. Water Science and Technology, 2018, 77, 2436-2444.	2.5	7

#	Article	IF	CITATIONS
163	Inhibition effects of organosulphur compounds on the hydrodechlorination of tetrachloroethylene over Pd/Al2O3 catalysts. Catalysis Today, 2003, 84, 121-127.	4.4	6
164	Inverse gas chromatography as a technique for the characterization of the performance of Mn/Zr mixed oxides as combustion catalysts. Journal of Chromatography A, 2009, 1216, 7873-7881.	3.7	6
165	Rational design of heating elements using CFD: Application to a bench-scale adiabatic reactor. Computers and Chemical Engineering, 2011, 35, 2326-2333.	3.8	6
166	Effect of catalyst morphology and hydrogen co-feeding on the acid-catalysed transformation of acetone into mesitylene. Catalysis Science and Technology, 2020, 10, 1356-1367.	4.1	6
167	Benzofuran as deactivation precursor molecule: Improving the stability of acid zeolites in biomass pyrolysis by co-feeding propylene. Applied Catalysis A: General, 2021, 611, 117980.	4.3	6
168	A new strategy for upgrading ventilation air methane emissions combining adsorption and combustion in a lean-gas turbine. Journal of Natural Gas Science and Engineering, 2021, 88, 103808.	4.4	6
169	From Biomass to Green Aromatics: Direct Upgrading of Furfural–Ethanol Mixtures. ACS Sustainable Chemistry and Engineering, 2022, 10, 7752-7758.	6.7	6
170	Cyclohexene Reactivity over Palladium Acetate Supported in Liquid Phase. Catalysis Letters, 2004, 96, 169-175.	2.6	4
171	Influence of nalidixic acid on tandem heterotrophic-autotrophic kinetics in a "NIPHO―activated sludge reactor. Chemosphere, 2019, 218, 128-137.	8.2	4
172	Harnessing of Diluted Methane Emissions by Direct Partial Oxidation of Methane to Methanol over Cu/Mordenite. Industrial & Engineering Chemistry Research, 2021, 60, 9409-9417.	3.7	4
173	Assessment of an integrated adsorption-regenerative catalytic oxidation process for the harnessing of lean methane emissions. Journal of Environmental Chemical Engineering, 2022, 10, 107013.	6.7	4
174	Performance of a cell-foam trickle-bed reactor for phenol wet oxidation: Influence of operation parameters and modelling. Chemical Engineering Research and Design, 2017, 107, 35-43.	5.6	3
175	Upgrading of methane emissions via chemical looping over copper-zeolites: Experiments and modelling. Chemical Engineering Science, 2022, 259, 117818.	3.8	3
176	Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts. Journal of Carbon Research, 2022, 8, 7.	2.7	2
177	Role of Reactant Alkylation Grade in the Selectivity and Stability of Furan–Alkene Diels–Alder Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 3057-3065.	6.7	2
178	An IGC Study of the Role of Washing Procedures on the Adsorption Properties of Activated Carbons. Adsorption Science and Technology, 2007, 25, 99-112.	3.2	1
179	Base-Catalyzed Reactions in Biomass Conversion: Reaction Mechanisms and Catalyst Deactivation. Green Chemistry and Sustainable Technology, 2016, , 87-122.	0.7	1
180	Micropollutants pre-concentration using adsorption-desorption cycles: application to chlorinated paraffins and alkyl-phenol derivatives. Journal of Chemical Technology and Biotechnology, 2017, 92, 1076-1084.	3.2	1

#	Article	IF	CITATIONS
181	PHYSICO CHEMICAL TREATMENT METHODS FUNDAMENTALS AND DESIGN GUIDELINES. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 1-38.	0.2	1
182	Transition metal oxide catalysts as an alternative for the oxidation of nitrogen monoxide to nitrogen dioxide: kinetic modelling at high space velocity. Journal of Chemical Technology and Biotechnology, 2016, 91, 359-366.	3.2	0
183	The Role of Heterogeneous Catalytic Processes in the Green Hydrogen Economy. Catalysts, 2021, 11, 1185.	3.5	0